Markus Rotzinger, Sebastian Tassoti, Klaus Zangger
{"title":"An all-at-once 2D CEST by F1-spatial frequency encoding","authors":"Markus Rotzinger, Sebastian Tassoti, Klaus Zangger","doi":"10.1016/j.jmro.2022.100073","DOIUrl":null,"url":null,"abstract":"<div><p>In this work we present a 2D NMR experiment that provides insight into the full chemical exchange saturation transfer (CEST) network present in a sample. It yields all CEST profiles between any signals in a spectrum at once. The method relies on a combination of slice selective saturation during the preparation period, combined with an inverse read-out gradient applied during the evolution time. The resulting 2D spectrum yields gradient profiles in F1 with dips at the frequencies of signals that show a CEST to the corresponding signal in F2.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"12 ","pages":"Article 100073"},"PeriodicalIF":2.6240,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441022000437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we present a 2D NMR experiment that provides insight into the full chemical exchange saturation transfer (CEST) network present in a sample. It yields all CEST profiles between any signals in a spectrum at once. The method relies on a combination of slice selective saturation during the preparation period, combined with an inverse read-out gradient applied during the evolution time. The resulting 2D spectrum yields gradient profiles in F1 with dips at the frequencies of signals that show a CEST to the corresponding signal in F2.