COMBINING GLOBAL AND LOCAL FEATURES FOR FOOD IDENTIFICATION IN DIETARY ASSESSMENT.

Marc Bosch, Fengqing Zhu, Nitin Khanna, Carol J Boushey, Edward J Delp
{"title":"COMBINING GLOBAL AND LOCAL FEATURES FOR FOOD IDENTIFICATION IN DIETARY ASSESSMENT.","authors":"Marc Bosch, Fengqing Zhu, Nitin Khanna, Carol J Boushey, Edward J Delp","doi":"10.1109/ICIP.2011.6115809","DOIUrl":null,"url":null,"abstract":"<p><p>Many chronic diseases, such as heart diseases, diabetes, and obesity, can be related to diet. Hence, the need to accurately measure diet becomes imperative. We are developing methods to use image analysis tools for the identification and quantification of food consumed at a meal. In this paper we describe a new approach to food identification using several features based on local and global measures and a \"voting\" based late decision fusion classifier to identify the food items. Experimental results on a wide variety of food items are presented.</p>","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"2011 ","pages":"1789-1792"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4123454/pdf/nihms327443.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2011.6115809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/12/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many chronic diseases, such as heart diseases, diabetes, and obesity, can be related to diet. Hence, the need to accurately measure diet becomes imperative. We are developing methods to use image analysis tools for the identification and quantification of food consumed at a meal. In this paper we describe a new approach to food identification using several features based on local and global measures and a "voting" based late decision fusion classifier to identify the food items. Experimental results on a wide variety of food items are presented.

在膳食评估中结合全球和地方特征进行食物识别。
许多慢性疾病,如心脏病、糖尿病和肥胖,都可能与饮食有关。因此,精确测量饮食变得势在必行。我们正在开发方法,使用图像分析工具来识别和量化在一顿饭中消耗的食物。本文描述了一种新的食品识别方法,该方法使用基于局部和全局度量的几个特征和基于“投票”的后期决策融合分类器来识别食品项目。实验结果在各种各样的食品项目提出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信