Sugar-based inhibitors of Ras activation: biological activity and identification of Ras-inhibitor binding interface.

Q3 Biochemistry, Genetics and Molecular Biology
Enzymes Pub Date : 2013-01-01 Epub Date: 2013-08-08 DOI:10.1016/B978-0-12-416749-0.00005-1
Alessandro Di Domizio, Francesco Peri
{"title":"Sugar-based inhibitors of Ras activation: biological activity and identification of Ras-inhibitor binding interface.","authors":"Alessandro Di Domizio,&nbsp;Francesco Peri","doi":"10.1016/B978-0-12-416749-0.00005-1","DOIUrl":null,"url":null,"abstract":"<p><p>Inhibition of oncogenic Ras activation through small molecules is a promising approach to the pharmacologic treatment of human tumors. A common strategy to block Ras activation and signal transduction is based on molecules that interfere with the guanine exchange factors (GEF)-promoted nucleotide exchange. We developed several generations of small molecules active in inhibiting Ras activation at low micromolar concentrations. Some of these compounds are more active on cell lines expressing oncogenic Ras than on normal cells and are therefore good hit compounds for anticancer drug development. The molecules belonging to the last generation are soluble in water and allowed the identification of binding site on Ras by means of NMR experiments in deuterated water. The experimentally-determined Ras-binding site comprises residues belonging to the α-2 helix and the β-3 strand of the central β-sheet in the Switch 2 region. Synthetic molecules bind Ras in a region belonging to the more extended Ras/GEF-binding site, and a possible mechanism of Ras inhibition by these compounds can be the blockade of GEF-mediated nucleotide exchange. </p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"95-116"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/B978-0-12-416749-0.00005-1","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzymes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/B978-0-12-416749-0.00005-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/8/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2

Abstract

Inhibition of oncogenic Ras activation through small molecules is a promising approach to the pharmacologic treatment of human tumors. A common strategy to block Ras activation and signal transduction is based on molecules that interfere with the guanine exchange factors (GEF)-promoted nucleotide exchange. We developed several generations of small molecules active in inhibiting Ras activation at low micromolar concentrations. Some of these compounds are more active on cell lines expressing oncogenic Ras than on normal cells and are therefore good hit compounds for anticancer drug development. The molecules belonging to the last generation are soluble in water and allowed the identification of binding site on Ras by means of NMR experiments in deuterated water. The experimentally-determined Ras-binding site comprises residues belonging to the α-2 helix and the β-3 strand of the central β-sheet in the Switch 2 region. Synthetic molecules bind Ras in a region belonging to the more extended Ras/GEF-binding site, and a possible mechanism of Ras inhibition by these compounds can be the blockade of GEF-mediated nucleotide exchange.

糖基Ras活化抑制剂:生物活性及Ras-抑制剂结合界面的鉴定。
通过小分子抑制致癌Ras激活是一种很有前途的人类肿瘤药物治疗方法。阻断Ras激活和信号转导的常用策略是基于干扰鸟嘌呤交换因子(GEF)促进的核苷酸交换的分子。我们开发了几代在低微摩尔浓度下抑制Ras激活的小分子。其中一些化合物在表达致癌Ras的细胞系上比在正常细胞上更活跃,因此是抗癌药物开发的良好打击化合物。最后一代分子可溶于水,在氘化水中通过核磁共振实验确定了Ras上的结合位点。实验确定的ras结合位点包括Switch 2区α-2螺旋和中央β-片β-3链的残基。合成分子结合Ras的区域属于更扩展的Ras/ gef结合位点,这些化合物抑制Ras的可能机制可能是阻断gef介导的核苷酸交换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Enzymes
Enzymes Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
4.30
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信