QTest: Quantitative Testing of Theories of Binary Choice.

Decisions Pub Date : 2014-01-01 DOI:10.1037/dec0000007
Michel Regenwetter, Clintin P Davis-Stober, Shiau Hong Lim, Ying Guo, Anna Popova, Chris Zwilling, Yun-Shil Cha, William Messner
{"title":"QTest: Quantitative Testing of Theories of Binary Choice.","authors":"Michel Regenwetter,&nbsp;Clintin P Davis-Stober,&nbsp;Shiau Hong Lim,&nbsp;Ying Guo,&nbsp;Anna Popova,&nbsp;Chris Zwilling,&nbsp;Yun-Shil Cha,&nbsp;William Messner","doi":"10.1037/dec0000007","DOIUrl":null,"url":null,"abstract":"<p><p>The goal of this paper is to make modeling and quantitative testing accessible to behavioral decision researchers interested in substantive questions. We provide a novel, rigorous, yet very general, quantitative diagnostic framework for testing theories of binary choice. This permits the nontechnical scholar to proceed far beyond traditionally rather superficial methods of analysis, and it permits the quantitatively savvy scholar to triage theoretical proposals before investing effort into complex and specialized quantitative analyses. Our theoretical framework links static algebraic decision theory with observed variability in behavioral binary choice data. The paper is supplemented with a custom-designed public-domain statistical analysis package, the QTest software. We illustrate our approach with a quantitative analysis using published laboratory data, including tests of novel versions of \"Random Cumulative Prospect Theory.\" A major asset of the approach is the potential to distinguish decision makers who have a fixed preference and commit errors in observed choices from decision makers who waver in their preferences.</p>","PeriodicalId":81078,"journal":{"name":"Decisions","volume":"1 1","pages":"2-34"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1037/dec0000007","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decisions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1037/dec0000007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

The goal of this paper is to make modeling and quantitative testing accessible to behavioral decision researchers interested in substantive questions. We provide a novel, rigorous, yet very general, quantitative diagnostic framework for testing theories of binary choice. This permits the nontechnical scholar to proceed far beyond traditionally rather superficial methods of analysis, and it permits the quantitatively savvy scholar to triage theoretical proposals before investing effort into complex and specialized quantitative analyses. Our theoretical framework links static algebraic decision theory with observed variability in behavioral binary choice data. The paper is supplemented with a custom-designed public-domain statistical analysis package, the QTest software. We illustrate our approach with a quantitative analysis using published laboratory data, including tests of novel versions of "Random Cumulative Prospect Theory." A major asset of the approach is the potential to distinguish decision makers who have a fixed preference and commit errors in observed choices from decision makers who waver in their preferences.

Abstract Image

Abstract Image

Abstract Image

QTest:二元选择理论的定量检验。
本文的目的是使对实质性问题感兴趣的行为决策研究人员能够进行建模和定量测试。我们提供了一个新的,严格的,但非常普遍的,定量诊断框架测试理论的二元选择。这使非技术学者能够远远超越传统的、相当肤浅的分析方法,并使精通定量的学者能够在投入精力进行复杂和专门的定量分析之前对理论建议进行分类。我们的理论框架将静态代数决策理论与行为二元选择数据中观察到的可变性联系起来。本文还补充了一个定制的公共领域统计分析包——QTest软件。我们通过使用已发表的实验室数据进行定量分析来说明我们的方法,包括对“随机累积前景理论”新版本的测试。该方法的一个主要优点是有可能区分具有固定偏好并在观察到的选择中犯错误的决策者和在偏好中摇摆不定的决策者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信