Andrew Thrasher, Zachary Musgrave, Brian Kachmarck, Douglas Thain, Scott Emrich
{"title":"Scaling up genome annotation using MAKER and work queue.","authors":"Andrew Thrasher, Zachary Musgrave, Brian Kachmarck, Douglas Thain, Scott Emrich","doi":"10.1504/IJBRA.2014.062994","DOIUrl":null,"url":null,"abstract":"<p><p>Next generation sequencing technologies have enabled sequencing many genomes. Because of the overall increasing demand and the inherent parallelism available in many required analyses, these bioinformatics applications should ideally run on clusters, clouds and/or grids. We present a modified annotation framework that achieves a speed-up of 45x using 50 workers using a Caenorhabditis japonica test case. We also evaluate these modifications within the Amazon EC2 cloud framework. The underlying genome annotation (MAKER) is parallelised as an MPI application. Our framework enables it to now run without MPI while utilising a wide variety of distributed computing resources. This parallel framework also allows easy explicit data transfer, which helps overcome a major limitation of bioinformatics tools that often rely on shared file systems. Combined, our proposed framework can be used, even during early stages of development, to easily run sequence analysis tools on clusters, grids and clouds. </p>","PeriodicalId":35444,"journal":{"name":"International Journal of Bioinformatics Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJBRA.2014.062994","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2014.062994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 9
Abstract
Next generation sequencing technologies have enabled sequencing many genomes. Because of the overall increasing demand and the inherent parallelism available in many required analyses, these bioinformatics applications should ideally run on clusters, clouds and/or grids. We present a modified annotation framework that achieves a speed-up of 45x using 50 workers using a Caenorhabditis japonica test case. We also evaluate these modifications within the Amazon EC2 cloud framework. The underlying genome annotation (MAKER) is parallelised as an MPI application. Our framework enables it to now run without MPI while utilising a wide variety of distributed computing resources. This parallel framework also allows easy explicit data transfer, which helps overcome a major limitation of bioinformatics tools that often rely on shared file systems. Combined, our proposed framework can be used, even during early stages of development, to easily run sequence analysis tools on clusters, grids and clouds.
期刊介绍:
Bioinformatics is an interdisciplinary research field that combines biology, computer science, mathematics and statistics into a broad-based field that will have profound impacts on all fields of biology. The emphasis of IJBRA is on basic bioinformatics research methods, tool development, performance evaluation and their applications in biology. IJBRA addresses the most innovative developments, research issues and solutions in bioinformatics and computational biology and their applications. Topics covered include Databases, bio-grid, system biology Biomedical image processing, modelling and simulation Bio-ontology and data mining, DNA assembly, clustering, mapping Computational genomics/proteomics Silico technology: computational intelligence, high performance computing E-health, telemedicine Gene expression, microarrays, identification, annotation Genetic algorithms, fuzzy logic, neural networks, data visualisation Hidden Markov models, machine learning, support vector machines Molecular evolution, phylogeny, modelling, simulation, sequence analysis Parallel algorithms/architectures, computational structural biology Phylogeny reconstruction algorithms, physiome, protein structure prediction Sequence assembly, search, alignment Signalling/computational biomedical data engineering Simulated annealing, statistical analysis, stochastic grammars.