Interpretation for scales of measurement linking with abstract algebra.

Journal of clinical bioinformatics Pub Date : 2014-06-10 eCollection Date: 2014-01-01 DOI:10.1186/2043-9113-4-9
Jitsuki Sawamura, Shigeru Morishita, Jun Ishigooka
{"title":"Interpretation for scales of measurement linking with abstract algebra.","authors":"Jitsuki Sawamura, Shigeru Morishita, Jun Ishigooka","doi":"10.1186/2043-9113-4-9","DOIUrl":null,"url":null,"abstract":"<p><p>THE STEVENS CLASSIFICATION OF LEVELS OF MEASUREMENT INVOLVES FOUR TYPES OF SCALE: \"Nominal\", \"Ordinal\", \"Interval\" and \"Ratio\". This classification has been used widely in medical fields and has accomplished an important role in composition and interpretation of scale. With this classification, levels of measurements appear organized and validated. However, a group theory-like systematization beckons as an alternative because of its logical consistency and unexceptional applicability in the natural sciences but which may offer great advantages in clinical medicine. According to this viewpoint, the Stevens classification is reformulated within an abstract algebra-like scheme; 'Abelian modulo additive group' for \"Ordinal scale\" accompanied with 'zero', 'Abelian additive group' for \"Interval scale\", and 'field' for \"Ratio scale\". Furthermore, a vector-like display arranges a mixture of schemes describing the assessment of patient states. With this vector-like notation, data-mining and data-set combination is possible on a higher abstract structure level based upon a hierarchical-cluster form. Using simple examples, we show that operations acting on the corresponding mixed schemes of this display allow for a sophisticated means of classifying, updating, monitoring, and prognosis, where better data mining/data usage and efficacy is expected. </p>","PeriodicalId":73663,"journal":{"name":"Journal of clinical bioinformatics","volume":"4 ","pages":"9"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2043-9113-4-9","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2043-9113-4-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

THE STEVENS CLASSIFICATION OF LEVELS OF MEASUREMENT INVOLVES FOUR TYPES OF SCALE: "Nominal", "Ordinal", "Interval" and "Ratio". This classification has been used widely in medical fields and has accomplished an important role in composition and interpretation of scale. With this classification, levels of measurements appear organized and validated. However, a group theory-like systematization beckons as an alternative because of its logical consistency and unexceptional applicability in the natural sciences but which may offer great advantages in clinical medicine. According to this viewpoint, the Stevens classification is reformulated within an abstract algebra-like scheme; 'Abelian modulo additive group' for "Ordinal scale" accompanied with 'zero', 'Abelian additive group' for "Interval scale", and 'field' for "Ratio scale". Furthermore, a vector-like display arranges a mixture of schemes describing the assessment of patient states. With this vector-like notation, data-mining and data-set combination is possible on a higher abstract structure level based upon a hierarchical-cluster form. Using simple examples, we show that operations acting on the corresponding mixed schemes of this display allow for a sophisticated means of classifying, updating, monitoring, and prognosis, where better data mining/data usage and efficacy is expected.

Abstract Image

Abstract Image

Abstract Image

与抽象代数相关的测量尺度解释。
史蒂文斯测量水平分类包括四种类型的量表:“名义”、“序数”、“间隔”和“比率”。该分类已广泛应用于医学领域,在尺度的构成和解释方面发挥了重要作用。有了这种分类,测量水平看起来是有组织和有效的。然而,类群理论的系统化因其逻辑一致性和在自然科学中的普遍适用性而成为另一种选择,但在临床医学中可能提供巨大的优势。根据这一观点,史蒂文斯分类在一个抽象的类代数格式中被重新表述;带“零”的“有序标度”用“阿贝尔模加性群”,“区间标度”用“阿贝尔加性群”,“比标度”用“域”。此外,一个类似矢量的显示器安排了描述患者状态评估的混合方案。有了这种类似向量的表示法,数据挖掘和数据集组合就可以在基于分层簇形式的更高抽象结构级别上实现。通过简单的示例,我们展示了在此显示的相应混合方案上运行的操作允许使用复杂的分类、更新、监控和预测手段,从而期望更好的数据挖掘/数据使用和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信