Electrochemical sensing via selective surface modification of iridium microelectrodes to create a platinum black interface.

Paras R Patel, Matthew D Gibson, Kip A Ludwig, Nicholas B Langhals
{"title":"Electrochemical sensing via selective surface modification of iridium microelectrodes to create a platinum black interface.","authors":"Paras R Patel,&nbsp;Matthew D Gibson,&nbsp;Kip A Ludwig,&nbsp;Nicholas B Langhals","doi":"10.1109/NER.2013.6696095","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to selectively deposit platinum black (PtB) on iridium microelectrodes and functionalize the surface for the purposes of choline sensing was investigated in this study. Platinum black was deposited by cycling 100-200 times between 0.5 V and -0.7 V in a solution of 1 mM K<sub>2</sub>PtCl<sub>6</sub> in 0.1 M KCl. Deposition of PtB showed good chemical stability as well as good adhesion following insertion into agarose gel as a model for brain insertion. Electrode sites were also tested for their oxidative capabilities of hydrogen peroxide during which they showed high current change in response to small concentration changes - attributable to the high surface area of the PtB. Sites were then coated with an enzyme solution containing choline oxidase, and a permselective layer of meta-phenylenediamine was added to filter interferents. Electrode sites yielded a high sensitivity to choline compared to interferents including ascorbic acid and dopamine.</p>","PeriodicalId":73414,"journal":{"name":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","volume":" ","pages":"961-964"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NER.2013.6696095","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2013.6696095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The ability to selectively deposit platinum black (PtB) on iridium microelectrodes and functionalize the surface for the purposes of choline sensing was investigated in this study. Platinum black was deposited by cycling 100-200 times between 0.5 V and -0.7 V in a solution of 1 mM K2PtCl6 in 0.1 M KCl. Deposition of PtB showed good chemical stability as well as good adhesion following insertion into agarose gel as a model for brain insertion. Electrode sites were also tested for their oxidative capabilities of hydrogen peroxide during which they showed high current change in response to small concentration changes - attributable to the high surface area of the PtB. Sites were then coated with an enzyme solution containing choline oxidase, and a permselective layer of meta-phenylenediamine was added to filter interferents. Electrode sites yielded a high sensitivity to choline compared to interferents including ascorbic acid and dopamine.

电化学传感通过选择性表面修饰的铱微电极创造一个铂黑界面。
本研究研究了在铱微电极上选择性沉积铂黑(PtB)并使其表面功能化以实现胆碱传感的能力。在0.1 M KCl和1mm K2PtCl6溶液中,在0.5 V和-0.7 V之间循环100-200次沉积铂黑。PtB的沉积具有良好的化学稳定性和良好的粘附性,可作为脑插入模型。电极位置也测试了过氧化氢的氧化能力,在此期间,由于PtB的高表面积,它们在响应小浓度变化时显示出高电流变化。然后用含有胆碱氧化酶的酶溶液涂覆位点,并在滤过物中加入间苯二胺的过选择性层。与抗坏血酸和多巴胺等干扰素相比,电极对胆碱的敏感性较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信