Mingjun Xuan, Jingxin Shao, Xiankun Lin, Luru Dai, Qiang He
{"title":"Self-propelled Janus mesoporous silica nanomotors with sub-100 nm diameters for drug encapsulation and delivery.","authors":"Mingjun Xuan, Jingxin Shao, Xiankun Lin, Luru Dai, Qiang He","doi":"10.1002/cphc.201402111","DOIUrl":null,"url":null,"abstract":"<p><p>The synthesis of an innovative self-propelled Janus nanomotor with a diameter of about 75 nm that can be used as a drug carrier is described. The Janus nanomotor is based on mesoporous silica nanoparticles (MSNs) with chromium/platinum metallic caps and propelled by decomposing hydrogen peroxide to generate oxygen as a driving force with speeds up to 20.2 μm s(-1) (about 267 body lengths per second). The diffusion coefficient (D) of nanomotors with different H2 O2 concentrations is calculated by tracking the movement of individual particles recorded by means of a self-assembled fluorescence microscope and is significantly larger than free Brownian motion. The traction of a single Janus MSN nanomotor is estimated to be about 13.47×10(-15) N. Finally, intracellular localization and drug release in vitro shows that the amount of Janus MSN nanomotors entering the cells is more than MSNs with same culture time and particle concentrations, meanwhile anticancer drug doxorubicin hydrochloride loaded in Janus MSNs can be slowly released by biodegradation of lipid bilayers in cells. </p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":"15 11","pages":"2255-60"},"PeriodicalIF":2.3000,"publicationDate":"2014-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cphc.201402111","citationCount":"144","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.201402111","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/4/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 144
Abstract
The synthesis of an innovative self-propelled Janus nanomotor with a diameter of about 75 nm that can be used as a drug carrier is described. The Janus nanomotor is based on mesoporous silica nanoparticles (MSNs) with chromium/platinum metallic caps and propelled by decomposing hydrogen peroxide to generate oxygen as a driving force with speeds up to 20.2 μm s(-1) (about 267 body lengths per second). The diffusion coefficient (D) of nanomotors with different H2 O2 concentrations is calculated by tracking the movement of individual particles recorded by means of a self-assembled fluorescence microscope and is significantly larger than free Brownian motion. The traction of a single Janus MSN nanomotor is estimated to be about 13.47×10(-15) N. Finally, intracellular localization and drug release in vitro shows that the amount of Janus MSN nanomotors entering the cells is more than MSNs with same culture time and particle concentrations, meanwhile anticancer drug doxorubicin hydrochloride loaded in Janus MSNs can be slowly released by biodegradation of lipid bilayers in cells.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.