Zuzanna Kaźmierczak, Agnieszka Piotrowicz, Barbara Owczarek, Katarzyna Hodyra, Paulina Miernikiewicz, Dorota Lecion, Marek Harhala, Andrzej Górski, Krystyna Dąbrowska
{"title":"Molecular imaging of T4 phage in mammalian tissues and cells.","authors":"Zuzanna Kaźmierczak, Agnieszka Piotrowicz, Barbara Owczarek, Katarzyna Hodyra, Paulina Miernikiewicz, Dorota Lecion, Marek Harhala, Andrzej Górski, Krystyna Dąbrowska","doi":"10.4161/bact.28364","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in phage therapy encourage scientific interest in interactions of phages with human and animal organisms. This has created a need for developing tools that facilitate studies of phage circulation and deposition in tissues and cells. Here we propose a new green fluorescent protein (GFP)-based method for T4 phage molecular imaging in living systems. The method employs decoration of a phage capsid with GFP fused to the N-terminus of Hoc protein by in vivo phage display. Fluorescent phages were positively assessed as regards their applicability for detection inside living mammalian cells (by phagocytosis) and tissues (filtering and retention by lymph nodes and spleen). Molecular imaging provides innovative techniques that have brought substantial progress in life sciences. We propose it as a useful tool for studies of phage biology.</p>","PeriodicalId":8686,"journal":{"name":"Bacteriophage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/bact.28364","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bacteriophage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/bact.28364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/2/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
Advances in phage therapy encourage scientific interest in interactions of phages with human and animal organisms. This has created a need for developing tools that facilitate studies of phage circulation and deposition in tissues and cells. Here we propose a new green fluorescent protein (GFP)-based method for T4 phage molecular imaging in living systems. The method employs decoration of a phage capsid with GFP fused to the N-terminus of Hoc protein by in vivo phage display. Fluorescent phages were positively assessed as regards their applicability for detection inside living mammalian cells (by phagocytosis) and tissues (filtering and retention by lymph nodes and spleen). Molecular imaging provides innovative techniques that have brought substantial progress in life sciences. We propose it as a useful tool for studies of phage biology.