Anders Ståhlberg, Pierre Aman, Linda Strömbom, Neven Zoric, Alfredo Diez, Olle Nilsson, Mikael Kubista, Börje Ridell
{"title":"Comparison of reverse transcription quantitative real-time PCR, flow cytometry, and immunohistochemistry for detection of monoclonality in lymphomas.","authors":"Anders Ståhlberg, Pierre Aman, Linda Strömbom, Neven Zoric, Alfredo Diez, Olle Nilsson, Mikael Kubista, Börje Ridell","doi":"10.1155/2014/796210","DOIUrl":null,"url":null,"abstract":"In healthy humans, 60–70% of the B lymphocytes produce kappa light chains, while the remaining cells produce lambda light chains. Malignant transformation and clonal expansion of B lymphocytes lead to an altered kappa : lambda expression ratio, which is an important diagnostic criteria of lymphomas. Here, we compared three methods for clonality determination of suspected B cell lymphomas. Tumor biopsies from 55 patients with B cell malignancies, 5 B-lymphoid tumor cell lines, and 20 biopsies from patients with lymphadenitis were analyzed by immunohistochemistry, flow cytometry, and reverse transcription quantitative real-time PCR. Clonality was determined by immunohistochemistry in 52/53 cases, flow cytometry in 30/39 cases, and reverse transcription quantitative real-time PCR in 33/55 cases. In conclusion, immunohistochemistry was superior to flow cytometry and reverse transcription quantitative real-time PCR for clonality identification. Flow cytometry and reverse transcription quantitative real-time PCR analysis has complementary values. In a considerable number of cases tumor cells produced both kappa and lambda light chain transcripts, but only one type of light chain peptide was produced.","PeriodicalId":89399,"journal":{"name":"ISRN oncology","volume":"2014 ","pages":"796210"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/796210","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/796210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In healthy humans, 60–70% of the B lymphocytes produce kappa light chains, while the remaining cells produce lambda light chains. Malignant transformation and clonal expansion of B lymphocytes lead to an altered kappa : lambda expression ratio, which is an important diagnostic criteria of lymphomas. Here, we compared three methods for clonality determination of suspected B cell lymphomas. Tumor biopsies from 55 patients with B cell malignancies, 5 B-lymphoid tumor cell lines, and 20 biopsies from patients with lymphadenitis were analyzed by immunohistochemistry, flow cytometry, and reverse transcription quantitative real-time PCR. Clonality was determined by immunohistochemistry in 52/53 cases, flow cytometry in 30/39 cases, and reverse transcription quantitative real-time PCR in 33/55 cases. In conclusion, immunohistochemistry was superior to flow cytometry and reverse transcription quantitative real-time PCR for clonality identification. Flow cytometry and reverse transcription quantitative real-time PCR analysis has complementary values. In a considerable number of cases tumor cells produced both kappa and lambda light chain transcripts, but only one type of light chain peptide was produced.