Effect of polymorphisms in the NADSYN1/DHCR7 locus (rs12785878 and rs1790349) on plasma 25-hydroxyvitamin D levels and coronary artery disease incidence.
Mohamed A Abu El Maaty, Sally I Hassanein, Hameis M Sleem, Mohamed Z Gad
{"title":"Effect of polymorphisms in the NADSYN1/DHCR7 locus (rs12785878 and rs1790349) on plasma 25-hydroxyvitamin D levels and coronary artery disease incidence.","authors":"Mohamed A Abu El Maaty, Sally I Hassanein, Hameis M Sleem, Mohamed Z Gad","doi":"10.1159/000360422","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Recent genome-wide association studies have identified the rs1790349 and rs12785878 single-nucleotide polymorphisms (SNPs), present in the NADSYN1/DHCR7 locus, as an influential player on circulating 25-hydroxyvitamin D [25(OH)D] levels, which itself has been linked to various diseases including cardiovascular disease (CVD). This study investigated the association of these SNPs with CVD and 25(OH)D levels.</p><p><strong>Methods: </strong>Sixty- three male patients with verified coronary artery disease (CAD) were recruited, as well as 31 age- and sex-matched controls. Genotyping was performed by sequencing, whereas plasma 25(OH)D levels were assessed by HPLC-UV.</p><p><strong>Results: </strong>Statistical insignificance was observed in comparing the genotype distribution of patients and controls for both the rs12785878 (NADSYN1) polymorphism (p = 0.097) and the rs1790349 (DHCR7; p = 0.9). Comparison of allelic distributions of rs1790349 and rs12785878 yielded insignificant results (p = 0.7, OR: 0.58-2.6 and p = 0.14, OR: 0.88-2.85, respectively). Taking together patients and controls, both SNPs were found to influence total 25(OH)D levels (p = 0.001 and p < 0.0001) as well as 25(OH)D3 levels only in controls.</p><p><strong>Conclusion: </strong>This study further supports the evidence of the ability of the investigated SNPs to predict circulating 25(OH)D levels, nonetheless opposing their use as genetic markers for CAD.</p>","PeriodicalId":54779,"journal":{"name":"Journal of Nutrigenetics and Nutrigenomics","volume":"6 6","pages":"327-35"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000360422","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutrigenetics and Nutrigenomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000360422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/3/15 0:00:00","PubModel":"Epub","JCR":"Q","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 12
Abstract
Background/aims: Recent genome-wide association studies have identified the rs1790349 and rs12785878 single-nucleotide polymorphisms (SNPs), present in the NADSYN1/DHCR7 locus, as an influential player on circulating 25-hydroxyvitamin D [25(OH)D] levels, which itself has been linked to various diseases including cardiovascular disease (CVD). This study investigated the association of these SNPs with CVD and 25(OH)D levels.
Methods: Sixty- three male patients with verified coronary artery disease (CAD) were recruited, as well as 31 age- and sex-matched controls. Genotyping was performed by sequencing, whereas plasma 25(OH)D levels were assessed by HPLC-UV.
Results: Statistical insignificance was observed in comparing the genotype distribution of patients and controls for both the rs12785878 (NADSYN1) polymorphism (p = 0.097) and the rs1790349 (DHCR7; p = 0.9). Comparison of allelic distributions of rs1790349 and rs12785878 yielded insignificant results (p = 0.7, OR: 0.58-2.6 and p = 0.14, OR: 0.88-2.85, respectively). Taking together patients and controls, both SNPs were found to influence total 25(OH)D levels (p = 0.001 and p < 0.0001) as well as 25(OH)D3 levels only in controls.
Conclusion: This study further supports the evidence of the ability of the investigated SNPs to predict circulating 25(OH)D levels, nonetheless opposing their use as genetic markers for CAD.
期刊介绍:
The emerging field of nutrigenetics and nutrigenomics is rapidly gaining importance, and this new international journal has been established to meet the needs of the investigators for a high-quality platform for their research. Endorsed by the recently founded "International Society of Nutrigenetics/Nutrigenomics", the ‘Journal of Nutrigenetics and Nutrigenomics’ welcomes contributions not only investigating the role of genetic variation in response to diet and that of nutrients in the regulation of gene expression, but is also open for articles covering all aspects of gene-environment interactions in the determination of health and disease.