下载PDF
{"title":"Multiparameter Analysis of Apoptosis Using Lab-on-a-Chip Flow Cytometry","authors":"Donald Wlodkowic, Joanna Skommer, Jin Akagi, Yoo Fujimura, Kazuo Takeda","doi":"10.1002/0471142956.cy0942s66","DOIUrl":null,"url":null,"abstract":"<p>The age of microfluidic flow cytometry (µFCM) is fast becoming a reality. One of the most exciting applications of miniaturized chip-based cytometers is multivariate analysis using sampling volumes as small as 10 µl while matching the multiparameter data collection of conventional flow cytometers. We outline several innovative protocols for analyzing caspase-dependent cell death and cell cycle (DNA-content) profile using a fully integrated microfluidic flow cytometry system, Fishman-R. The first protocol describes the use of a new plasma membrane–permeability marker, DRAQ7, and the fluorogenic caspase substrate PhiPhiLux to track caspase activation during programmed cell death. Also outlined is the use of DRAQ7 fluorochrome in conjunction with the mitochondrial membrane potential–sensitive probe TMRM to track dissipation of inner mitochondrial cross-membrane potential. Another protocol adds the ability to measure dissipation of mitochondrial inner membrane potential (using TMRM probe) in relation to the cell cycle profile (using DRAQ5 probe) in living leukemic cells. Finally, we describe the combined use of fluorogenic caspases substrate PhiPhiLux with DRAQ5 probe to measure caspase activation in relation to the cell cycle profile in living tumor cells. <i>Curr. Protoc. Cytom</i>. 66:9.42.1-9.42.15. © 2013 by John Wiley & Sons, Inc.</p>","PeriodicalId":11020,"journal":{"name":"Current Protocols in Cytometry","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/0471142956.cy0942s66","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Cytometry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/0471142956.cy0942s66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 9
引用
批量引用
Abstract
The age of microfluidic flow cytometry (µFCM) is fast becoming a reality. One of the most exciting applications of miniaturized chip-based cytometers is multivariate analysis using sampling volumes as small as 10 µl while matching the multiparameter data collection of conventional flow cytometers. We outline several innovative protocols for analyzing caspase-dependent cell death and cell cycle (DNA-content) profile using a fully integrated microfluidic flow cytometry system, Fishman-R. The first protocol describes the use of a new plasma membrane–permeability marker, DRAQ7, and the fluorogenic caspase substrate PhiPhiLux to track caspase activation during programmed cell death. Also outlined is the use of DRAQ7 fluorochrome in conjunction with the mitochondrial membrane potential–sensitive probe TMRM to track dissipation of inner mitochondrial cross-membrane potential. Another protocol adds the ability to measure dissipation of mitochondrial inner membrane potential (using TMRM probe) in relation to the cell cycle profile (using DRAQ5 probe) in living leukemic cells. Finally, we describe the combined use of fluorogenic caspases substrate PhiPhiLux with DRAQ5 probe to measure caspase activation in relation to the cell cycle profile in living tumor cells. Curr. Protoc. Cytom . 66:9.42.1-9.42.15. © 2013 by John Wiley & Sons, Inc.
芯片上实验室流式细胞术多参数分析细胞凋亡
微流控流式细胞术(µFCM)的时代正在迅速成为现实。小型化芯片细胞仪最令人兴奋的应用之一是使用小至10 μ l的取样体积进行多元分析,同时匹配传统流式细胞仪的多参数数据收集。我们概述了使用完全集成的微流控流式细胞术系统Fishman-R分析caspase依赖性细胞死亡和细胞周期(dna含量)谱的几种创新方案。第一个方案描述了使用一种新的质膜渗透性标记物DRAQ7和荧光caspase底物PhiPhiLux来跟踪程序性细胞死亡过程中caspase的激活。还概述了使用DRAQ7荧光染料结合线粒体膜电位敏感探针TMRM来跟踪线粒体内部跨膜电位的消散。另一种方案增加了在活的白血病细胞中测量线粒体内膜电位耗散(使用TMRM探针)与细胞周期谱(使用DRAQ5探针)的关系的能力。最后,我们描述了结合使用荧光caspase底物PhiPhiLux和DRAQ5探针来测量活肿瘤细胞中caspase激活与细胞周期谱的关系。咕咕叫。Protoc。Cytom 66:9.42.1-9.42.15。©2013 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。