Ian Mitchelle S. de Vera, Mandy E. Blackburn, Luis Galiano, Gail E. Fanucci
下载PDF
{"title":"Pulsed EPR Distance Measurements in Soluble Proteins by Site-Directed Spin Labeling (SDSL)","authors":"Ian Mitchelle S. de Vera, Mandy E. Blackburn, Luis Galiano, Gail E. Fanucci","doi":"10.1002/0471140864.ps1717s74","DOIUrl":null,"url":null,"abstract":"<p>The resurgence of pulsed electron paramagnetic resonance (EPR) in structural biology centers on recent improvements in distance measurements using the double electron-electron resonance (DEER) technique. This unit focuses on EPR-based distance measurements by site-directed spin labeling (SDSL) of engineered cysteine residues in soluble proteins, with HIV-1 protease used as a model. To elucidate conformational changes in proteins, experimental protocols were optimized and existing data analysis programs were employed to derive distance-distribution profiles. Experimental considerations, sample preparation, and error analysis for artifact suppression are also outlined herein. <i>Curr. Protoc. Protein Sci</i>. 74:17.17.1-17.17.29. © 2013 by John Wiley & Sons, Inc.</p>","PeriodicalId":10866,"journal":{"name":"Current Protocols in Protein Science","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/0471140864.ps1717s74","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Protein Science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/0471140864.ps1717s74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 19
引用
批量引用
Abstract
The resurgence of pulsed electron paramagnetic resonance (EPR) in structural biology centers on recent improvements in distance measurements using the double electron-electron resonance (DEER) technique. This unit focuses on EPR-based distance measurements by site-directed spin labeling (SDSL) of engineered cysteine residues in soluble proteins, with HIV-1 protease used as a model. To elucidate conformational changes in proteins, experimental protocols were optimized and existing data analysis programs were employed to derive distance-distribution profiles. Experimental considerations, sample preparation, and error analysis for artifact suppression are also outlined herein. Curr. Protoc. Protein Sci . 74:17.17.1-17.17.29. © 2013 by John Wiley & Sons, Inc.
利用定位自旋标记(SDSL)测定可溶性蛋白的脉冲EPR距离
脉冲电子顺磁共振(EPR)在结构生物学领域的复兴主要是由于双电子-电子共振(DEER)技术在距离测量方面的最新进展。本单元以HIV-1蛋白酶为模型,通过位点定向自旋标记(SDSL)对可溶性蛋白中的工程半胱氨酸残基进行基于epr的距离测量。为了阐明蛋白质的构象变化,对实验方案进行了优化,并利用现有的数据分析程序推导了距离分布曲线。本文还概述了伪影抑制的实验考虑、样品制备和误差分析。咕咕叫。Protoc。蛋白质科学,74:17.17.1-17.17.29。©2013 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。