{"title":"Mitochondrial DNA variation in the East China Sea and Yellow Sea populations of swimming crab Ovalipes punctatus.","authors":"Wei Zheng, Zhiqiang Han, Guobao Chen, Cungen Yu, Tianxiang Gao","doi":"10.3109/19401736.2013.873894","DOIUrl":null,"url":null,"abstract":"<p><p>Swimming crab Ovalipes punctatus is a commercially important species in the East China Sea and Yellow Sea, but there is limited knowledge of its genetic population structure. The population genetic structure of O. punctatus in East China Sea and Yellow Sea was examined with a 658-bp segment of the mtDNA COI gene. A total of 60 individuals were collected from five locations and 48 haplotypes were obtained. Mean haplotype diversity and nucleotide diversity for the five populations were 0.9876 ± 0.0068 and 0.0074 ± 0.0041, respectively. Analysis of molecular variance (AMOVA) detected no significant differences at all hierarchical levels, and all FST values were non-significant, indicating that no significant population genetic structure exists in the East China Sea and Yellow Sea. These results supported the null hypothesis that O. punctatus within the East China Sea and Yellow Sea constitutes a panmictic mtDNA gene pool. Neutrality tests and mismatch distribution supported population expansion in this species, indicating that climate change could play an important role in affecting the demographic history of marine species. Strong dispersal capacity of larvae and adults, and ocean currents in the studied area could be the reasons for genetic homogeneity in this species in the East China Sea and Yellow Sea. Another explanation for the lack of phylogeographic structure in O. punctatus might reflect a recent range expansion after the last glacial maximum and insufficient time to attain migration-drift equilibrium.</p>","PeriodicalId":49805,"journal":{"name":"Mitochondrial Dna","volume":"26 4","pages":"559-65"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/19401736.2013.873894","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial Dna","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/19401736.2013.873894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Swimming crab Ovalipes punctatus is a commercially important species in the East China Sea and Yellow Sea, but there is limited knowledge of its genetic population structure. The population genetic structure of O. punctatus in East China Sea and Yellow Sea was examined with a 658-bp segment of the mtDNA COI gene. A total of 60 individuals were collected from five locations and 48 haplotypes were obtained. Mean haplotype diversity and nucleotide diversity for the five populations were 0.9876 ± 0.0068 and 0.0074 ± 0.0041, respectively. Analysis of molecular variance (AMOVA) detected no significant differences at all hierarchical levels, and all FST values were non-significant, indicating that no significant population genetic structure exists in the East China Sea and Yellow Sea. These results supported the null hypothesis that O. punctatus within the East China Sea and Yellow Sea constitutes a panmictic mtDNA gene pool. Neutrality tests and mismatch distribution supported population expansion in this species, indicating that climate change could play an important role in affecting the demographic history of marine species. Strong dispersal capacity of larvae and adults, and ocean currents in the studied area could be the reasons for genetic homogeneity in this species in the East China Sea and Yellow Sea. Another explanation for the lack of phylogeographic structure in O. punctatus might reflect a recent range expansion after the last glacial maximum and insufficient time to attain migration-drift equilibrium.
期刊介绍:
Previously published under the title DNA Sequence (Vols 1-19.3), Mitochondrial DNA accepts original high-quality reports based on mapping, sequencing and analysis of mitochondrial DNA and RNA. Descriptive papers on DNA sequences from mitochondrial genomes, and also analytical papers in the areas of population genetics, medical genetics, phylogenetics and human evolution that use mitochondrial DNA as a source of evidence for studies will be considered for publication. The editorial board will also consider manuscripts that examine population genetic and systematic theory that specifically address the use of mitochondrial DNA sequences.