Nikol A. Zografou-Barredo, Alex J. Hallatt, Jennyfer Goujon-Ricci, Céline Cano
{"title":"A beginner’s guide to current synthetic linker strategies towards VHL-recruiting PROTACs","authors":"Nikol A. Zografou-Barredo, Alex J. Hallatt, Jennyfer Goujon-Ricci, Céline Cano","doi":"10.1016/j.bmc.2023.117334","DOIUrl":null,"url":null,"abstract":"<div><p>Over the last two decades, proteolysis targeting chimeras (PROTACs) have been revolutionary in drug development rendering targeted protein degradation (TPD) as an emerging therapeutic modality. These heterobifunctional molecules are comprised of three units: a ligand for the protein of interest (POI), a ligand for an E3 ubiquitin ligase, and a linker that tethers the two motifs together. Von Hippel-Lindau (VHL) is one of the most widely employed E3 ligases in PROTACs development due to its prevalent expression across tissue types and well-characterised ligands. Linker composition and length has proven to play an important role in determining the physicochemical properties and spatial orientation of the POI-PROTAC-E3 ternary complex, thus influencing the bioactivity of degraders. Numerous articles and reports have been published showcasing the medicinal chemistry aspects of the linker design, but few have focused on the chemistry around tethering linkers to E3 ligase ligands. In this review, we focus on the current synthetic linker strategies employed in the assembly of VHL-recruiting PROTACs. We aim to cover a range of fundamental chemistries used to incorporate linkers of varying length, composition and functionality.</p></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"88 ","pages":"Article 117334"},"PeriodicalIF":3.3000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089623001827","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Over the last two decades, proteolysis targeting chimeras (PROTACs) have been revolutionary in drug development rendering targeted protein degradation (TPD) as an emerging therapeutic modality. These heterobifunctional molecules are comprised of three units: a ligand for the protein of interest (POI), a ligand for an E3 ubiquitin ligase, and a linker that tethers the two motifs together. Von Hippel-Lindau (VHL) is one of the most widely employed E3 ligases in PROTACs development due to its prevalent expression across tissue types and well-characterised ligands. Linker composition and length has proven to play an important role in determining the physicochemical properties and spatial orientation of the POI-PROTAC-E3 ternary complex, thus influencing the bioactivity of degraders. Numerous articles and reports have been published showcasing the medicinal chemistry aspects of the linker design, but few have focused on the chemistry around tethering linkers to E3 ligase ligands. In this review, we focus on the current synthetic linker strategies employed in the assembly of VHL-recruiting PROTACs. We aim to cover a range of fundamental chemistries used to incorporate linkers of varying length, composition and functionality.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.