Deedee Smith, Sandra H Clark, Paul A Bertin, Bernard L Mirkin, Sonbinh T Nguyen
{"title":"Synthesis and <i>In vitro</i> activity of ROMP-based polymer nanoparticles.","authors":"Deedee Smith, Sandra H Clark, Paul A Bertin, Bernard L Mirkin, Sonbinh T Nguyen","doi":"10.1039/B817511J","DOIUrl":null,"url":null,"abstract":"<p><p>A new type of polymer nanoparticle (PNP) containing a high density of covalently linked doxorubicin, attached via a non-cleavable amine linkage (amine-linked Dox-PNP) was prepared. Together with a previously reported cleavable carbamate-linked Dox-PNP, this new amine-linked Dox-PNP was subsequently evaluated against free doxorubicin for its cytotoxicity and inhibitory effects on SKNSH wild-type and SKrDOX6 doxorubicin-resistant human neuroblastoma cell lines. Analogous cholesterol-containing PNPs (Chol-PNPs) and indomethacin-containing PNPs (IND-PNPs) were also synthesized and used as the non-cytotoxic controls. While neither cell line was affected by Chol-PNPs or IND-PNPs, SKrDOX6 doxorubicin-resistant cells exhibited similar cytotoxic responses to free doxorubicin and both amine- and carbamate-linked Dox-PNPs, suggesting that doxorubicin or the doxorubicin-containing polymer must be the active agent in the latter case. SKNSH wild-type cells also responded to both Dox-PNPs, albeit at a higher apparent concentration than free doxorubicin alone. The growth of SKNSH wild-type cells was significantly inhibited upon incubation with carbamate-linked Dox-PNPs, as with free doxorubicin, over a 7-day period. In comparison to free doxorubicin, carbamate-linked Dox-PNPs produced a longer (72-h) period of initial inhibition in SKrDOX6 doxorubicin-resistant cells.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":"19 15","pages":"2159-2165"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/B817511J","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/B817511J","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
A new type of polymer nanoparticle (PNP) containing a high density of covalently linked doxorubicin, attached via a non-cleavable amine linkage (amine-linked Dox-PNP) was prepared. Together with a previously reported cleavable carbamate-linked Dox-PNP, this new amine-linked Dox-PNP was subsequently evaluated against free doxorubicin for its cytotoxicity and inhibitory effects on SKNSH wild-type and SKrDOX6 doxorubicin-resistant human neuroblastoma cell lines. Analogous cholesterol-containing PNPs (Chol-PNPs) and indomethacin-containing PNPs (IND-PNPs) were also synthesized and used as the non-cytotoxic controls. While neither cell line was affected by Chol-PNPs or IND-PNPs, SKrDOX6 doxorubicin-resistant cells exhibited similar cytotoxic responses to free doxorubicin and both amine- and carbamate-linked Dox-PNPs, suggesting that doxorubicin or the doxorubicin-containing polymer must be the active agent in the latter case. SKNSH wild-type cells also responded to both Dox-PNPs, albeit at a higher apparent concentration than free doxorubicin alone. The growth of SKNSH wild-type cells was significantly inhibited upon incubation with carbamate-linked Dox-PNPs, as with free doxorubicin, over a 7-day period. In comparison to free doxorubicin, carbamate-linked Dox-PNPs produced a longer (72-h) period of initial inhibition in SKrDOX6 doxorubicin-resistant cells.