{"title":"ZSM-5-SO3H: An Efficient Catalyst for Acylation of Sulfonamides Amines, Alcohols, and Phenols under Solvent-Free Conditions.","authors":"Ahmad Reza Massah, Roozbeh Javad Kalbasi, Mahdiehsadat Khalifesoltani, Fariba Moshtagh Kordesofla","doi":"10.1155/2013/951749","DOIUrl":null,"url":null,"abstract":"<p><p>Sulfonamides amines, alcohols, and phenols were efficiently acylated with carboxylic acid anhydrides and chlorides using ZSM-5-SO3H as catalyst under mild and solvent-free conditions. Also, direct esterification of alcohols with carboxylic acids occurred readily in the presence of this catalyst. Different types of amides and esters were obtained in moderate to high yields and purity after a simple workup. No chromatographic separation is needed for isolation of the acylated product. The catalyst was recovered and reused for up to four times without a noticeable decrease in catalytic activity. </p>","PeriodicalId":14730,"journal":{"name":"ISRN Organic Chemistry","volume":"2013 ","pages":"951749"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/951749","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN Organic Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/951749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Sulfonamides amines, alcohols, and phenols were efficiently acylated with carboxylic acid anhydrides and chlorides using ZSM-5-SO3H as catalyst under mild and solvent-free conditions. Also, direct esterification of alcohols with carboxylic acids occurred readily in the presence of this catalyst. Different types of amides and esters were obtained in moderate to high yields and purity after a simple workup. No chromatographic separation is needed for isolation of the acylated product. The catalyst was recovered and reused for up to four times without a noticeable decrease in catalytic activity.