Spiking Neural Network Decoder for Brain-Machine Interfaces.

Julie Dethier, Vikash Gilja, Paul Nuyujukian, Shauki A Elassaad, Krishna V Shenoy, Kwabena Boahen
{"title":"Spiking Neural Network Decoder for Brain-Machine Interfaces.","authors":"Julie Dethier,&nbsp;Vikash Gilja,&nbsp;Paul Nuyujukian,&nbsp;Shauki A Elassaad,&nbsp;Krishna V Shenoy,&nbsp;Kwabena Boahen","doi":"10.1109/NER.2011.5910570","DOIUrl":null,"url":null,"abstract":"<p><p>We used a spiking neural network (SNN) to decode neural data recorded from a 96-electrode array in premotor/motor cortex while a rhesus monkey performed a point-to-point reaching arm movement task. We mapped a Kalman-filter neural prosthetic decode algorithm developed to predict the arm's velocity on to the SNN using the Neural Engineering Framework and simulated it using <i>Nengo</i>, a freely available software package. A 20,000-neuron network matched the standard decoder's prediction to within 0.03% (normalized by maximum arm velocity). A 1,600-neuron version of this network was within 0.27%, and run in real-time on a 3GHz PC. These results demonstrate that a SNN can implement a statistical signal processing algorithm widely used as the decoder in high-performance neural prostheses (Kalman filter), and achieve similar results with just a few thousand neurons. Hardware SNN implementations-neuromorphic chips-may offer power savings, essential for realizing fully-implantable cortically controlled prostheses.</p>","PeriodicalId":73414,"journal":{"name":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NER.2011.5910570","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2011.5910570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We used a spiking neural network (SNN) to decode neural data recorded from a 96-electrode array in premotor/motor cortex while a rhesus monkey performed a point-to-point reaching arm movement task. We mapped a Kalman-filter neural prosthetic decode algorithm developed to predict the arm's velocity on to the SNN using the Neural Engineering Framework and simulated it using Nengo, a freely available software package. A 20,000-neuron network matched the standard decoder's prediction to within 0.03% (normalized by maximum arm velocity). A 1,600-neuron version of this network was within 0.27%, and run in real-time on a 3GHz PC. These results demonstrate that a SNN can implement a statistical signal processing algorithm widely used as the decoder in high-performance neural prostheses (Kalman filter), and achieve similar results with just a few thousand neurons. Hardware SNN implementations-neuromorphic chips-may offer power savings, essential for realizing fully-implantable cortically controlled prostheses.

脑机接口的脉冲神经网络解码器。
当猕猴执行点对点到达手臂运动任务时,我们使用脉冲神经网络(SNN)来解码由96个电极阵列记录的运动前/运动皮层的神经数据。我们使用神经工程框架将卡尔曼滤波神经假肢解码算法映射到SNN上,该算法用于预测手臂的速度,并使用免费软件包Nengo进行模拟。一个20,000个神经元的网络与标准解码器的预测相匹配,误差在0.03%以内(按最大臂速归一化)。该网络的1600个神经元版本在0.27%以内,并在3GHz PC上实时运行。这些结果表明,SNN可以实现广泛用于高性能神经假体(卡尔曼滤波器)解码器的统计信号处理算法,并且仅用几千个神经元就可以获得类似的结果。硬件SNN实现——神经形态芯片——可能会节省电力,这对于实现完全可植入的皮质控制假肢至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信