{"title":"Intravital microscopic research of microembolization with degradable starch microspheres.","authors":"Micaela Ebert, Juergen Ebert, Gerd Berger","doi":"10.1155/2013/242060","DOIUrl":null,"url":null,"abstract":"<p><p>Treatment efficacy in cancer patients using systemically applied cytostatic drugs is decreased by cytotoxic side effects, which limits the use of efficient dosages. Degradable starch microspheres (DSM) are used to apply drugs into blood vessels which supply the target organ leading to drug accumulation in the target organ by reduction of the blood flow. The present investigations show that DSM is a very effective embolization material leading to effective and enhanced accumulation of 5-FU within the liver tumor tissue of experimental induced liver cancer in rats. By using intravital microscopy, a rapid deceleration of the blood flow into the target organ is observed immediately after application of DSM. The microspheres are stepwise degraded in the direction of the systemic blood flow and are totally dissolved after 25 minutes. These stepwise processes leave the degraded material during the degradation process within the vessels leading to temporally reciprocal blood flow via some of the side-arms of the major blood vessels. By using DMS in transarterial chemoembolization (TACE), severe adverse side effects like postembolization syndrome are rarely observed when compared to other embolization materials. The complete degradation of DSM causes only a short-lasting temporary vascular occlusion, which allows a repeat application of DSM in TACE. </p>","PeriodicalId":15575,"journal":{"name":"Journal of drug delivery","volume":"2013 ","pages":"242060"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/242060","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/242060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/11/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Treatment efficacy in cancer patients using systemically applied cytostatic drugs is decreased by cytotoxic side effects, which limits the use of efficient dosages. Degradable starch microspheres (DSM) are used to apply drugs into blood vessels which supply the target organ leading to drug accumulation in the target organ by reduction of the blood flow. The present investigations show that DSM is a very effective embolization material leading to effective and enhanced accumulation of 5-FU within the liver tumor tissue of experimental induced liver cancer in rats. By using intravital microscopy, a rapid deceleration of the blood flow into the target organ is observed immediately after application of DSM. The microspheres are stepwise degraded in the direction of the systemic blood flow and are totally dissolved after 25 minutes. These stepwise processes leave the degraded material during the degradation process within the vessels leading to temporally reciprocal blood flow via some of the side-arms of the major blood vessels. By using DMS in transarterial chemoembolization (TACE), severe adverse side effects like postembolization syndrome are rarely observed when compared to other embolization materials. The complete degradation of DSM causes only a short-lasting temporary vascular occlusion, which allows a repeat application of DSM in TACE.