Optimal Input Signal Design for Data-Centric Estimation Methods.

Sunil Deshpande, Daniel E Rivera
{"title":"Optimal Input Signal Design for Data-Centric Estimation Methods.","authors":"Sunil Deshpande,&nbsp;Daniel E Rivera","doi":"10.1109/acc.2013.6580439","DOIUrl":null,"url":null,"abstract":"<p><p>Data-centric estimation methods such as Model-on-Demand and Direct Weight Optimization form attractive techniques for estimating unknown functions from noisy data. These methods rely on generating a local function approximation from a database of regressors at the current operating point with the process repeated at each new operating point. This paper examines the design of optimal input signals formulated to produce informative data to be used by local modeling procedures. The proposed method specifically addresses the distribution of the regressor vectors. The design is examined for a linear time-invariant system under amplitude constraints on the input. The resulting optimization problem is solved using semidefinite relaxation methods. Numerical examples show the benefits in comparison to a classical PRBS input design.</p>","PeriodicalId":74510,"journal":{"name":"Proceedings of the ... American Control Conference. American Control Conference","volume":" ","pages":"3924-3929"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/acc.2013.6580439","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... American Control Conference. American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/acc.2013.6580439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Data-centric estimation methods such as Model-on-Demand and Direct Weight Optimization form attractive techniques for estimating unknown functions from noisy data. These methods rely on generating a local function approximation from a database of regressors at the current operating point with the process repeated at each new operating point. This paper examines the design of optimal input signals formulated to produce informative data to be used by local modeling procedures. The proposed method specifically addresses the distribution of the regressor vectors. The design is examined for a linear time-invariant system under amplitude constraints on the input. The resulting optimization problem is solved using semidefinite relaxation methods. Numerical examples show the benefits in comparison to a classical PRBS input design.

以数据为中心估计方法的最优输入信号设计。
以数据为中心的估计方法,如按需模型和直接权重优化,形成了从噪声数据中估计未知函数的有吸引力的技术。这些方法依赖于从当前工作点的回归量数据库生成局部函数近似值,并在每个新工作点重复该过程。本文探讨了最佳输入信号的设计,以产生供局部建模程序使用的信息数据。提出的方法专门针对回归向量的分布。在输入的振幅约束下,对线性时不变系统的设计进行了检验。采用半定松弛法求解优化问题。数值算例显示了与传统PRBS输入设计相比的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信