Chunqing Guo, Annicole Buranych, Devanand Sarkar, Paul B Fisher, Xiang-Yang Wang
{"title":"The role of tumor-associated macrophages in tumor vascularization.","authors":"Chunqing Guo, Annicole Buranych, Devanand Sarkar, Paul B Fisher, Xiang-Yang Wang","doi":"10.1186/2045-824X-5-20","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor vascularization is a highly complex process that involves the interaction between tumors and their surrounding stroma, as well as many distinct angiogenesis-regulating factors. Tumor associated macrophages (TAMs) represent one of the most abundant cell components in the tumor environment and key contributors to cancer-related inflammation. A large body of evidence supports the notion that TAMs play a critical role in promoting the formation of an abnormal tumor vascular network and subsequent tumor progression and invasion. Clinical and experimental evidence has shown that high levels of infiltrating TAMs are associated with poor patient prognosis and tumor resistance to therapies. In addition to stimulating angiogenesis during tumor growth, TAMs enhance tumor revascularization in response to cytotoxic therapy (e.g., radiotherapy), thereby causing cancer relapse. In this review, we highlight the emerging data related to the phenotype and polarization of TAMs in the tumor microenvironment, as well as the underlying mechanisms of macrophage function in the regulation of the angiogenic switch and tumor vascularization. Additionally, we discuss the potential of targeting pro-angiogenic TAMs, or reprograming TAMs toward a tumoricidal and angiostatic phenotype, to promote normalization of the tumor vasculature to enhance the outcome of cancer therapies.</p>","PeriodicalId":23948,"journal":{"name":"Vascular Cell","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913793/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vascular Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2045-824X-5-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor vascularization is a highly complex process that involves the interaction between tumors and their surrounding stroma, as well as many distinct angiogenesis-regulating factors. Tumor associated macrophages (TAMs) represent one of the most abundant cell components in the tumor environment and key contributors to cancer-related inflammation. A large body of evidence supports the notion that TAMs play a critical role in promoting the formation of an abnormal tumor vascular network and subsequent tumor progression and invasion. Clinical and experimental evidence has shown that high levels of infiltrating TAMs are associated with poor patient prognosis and tumor resistance to therapies. In addition to stimulating angiogenesis during tumor growth, TAMs enhance tumor revascularization in response to cytotoxic therapy (e.g., radiotherapy), thereby causing cancer relapse. In this review, we highlight the emerging data related to the phenotype and polarization of TAMs in the tumor microenvironment, as well as the underlying mechanisms of macrophage function in the regulation of the angiogenic switch and tumor vascularization. Additionally, we discuss the potential of targeting pro-angiogenic TAMs, or reprograming TAMs toward a tumoricidal and angiostatic phenotype, to promote normalization of the tumor vasculature to enhance the outcome of cancer therapies.