Using the LOINC Semantic Structure to Integrate Community-based Survey Items into a Concept-based Enterprise Data Dictionary to Support Comparative Effectiveness Research.

Manuel C Co, Bernadette Boden-Albala, Leigh Quarles, Adam Wilcox, Suzanne Bakken
{"title":"Using the LOINC Semantic Structure to Integrate Community-based Survey Items into a Concept-based Enterprise Data Dictionary to Support Comparative Effectiveness Research.","authors":"Manuel C Co,&nbsp;Bernadette Boden-Albala,&nbsp;Leigh Quarles,&nbsp;Adam Wilcox,&nbsp;Suzanne Bakken","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In designing informatics infrastructure to support comparative effectiveness research (CER), it is necessary to implement approaches for integrating heterogeneous data sources such as clinical data typically stored in clinical data warehouses and those that are normally stored in separate research databases. One strategy to support this integration is the use of a concept-oriented data dictionary with a set of semantic terminology models. The aim of this paper is to illustrate the use of the semantic structure of Clinical LOINC (Logical Observation Identifiers, Names, and Codes) in integrating community-based survey items into the Medical Entities Dictionary (MED) to support the integration of survey data with clinical data for CER studies. </p>","PeriodicalId":90025,"journal":{"name":"NI 2012 : 11th International Congress on Nursing Informatics, June 23-27, 2012, Montreal, Canada. International Congress in Nursing Informatics (11th : 2012 : Montreal, Quebec)","volume":"2012 ","pages":"88"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799173/pdf/amia_2012_ni_088.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NI 2012 : 11th International Congress on Nursing Informatics, June 23-27, 2012, Montreal, Canada. International Congress in Nursing Informatics (11th : 2012 : Montreal, Quebec)","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In designing informatics infrastructure to support comparative effectiveness research (CER), it is necessary to implement approaches for integrating heterogeneous data sources such as clinical data typically stored in clinical data warehouses and those that are normally stored in separate research databases. One strategy to support this integration is the use of a concept-oriented data dictionary with a set of semantic terminology models. The aim of this paper is to illustrate the use of the semantic structure of Clinical LOINC (Logical Observation Identifiers, Names, and Codes) in integrating community-based survey items into the Medical Entities Dictionary (MED) to support the integration of survey data with clinical data for CER studies.

利用LOINC语义结构将基于社区的调查项目整合到基于概念的企业数据词典中,以支持比较有效性研究。
在设计信息学基础设施以支持比较有效性研究(CER)时,有必要实现集成异构数据源的方法,例如通常存储在临床数据仓库中的临床数据和通常存储在单独研究数据库中的临床数据。支持这种集成的一种策略是使用带有一组语义术语模型的面向概念的数据字典。本文的目的是说明临床LOINC(逻辑观察标识符、名称和代码)的语义结构在将基于社区的调查项目整合到医学实体词典(MED)中的使用,以支持调查数据与CER研究的临床数据的整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信