Joseph M Custodio, Xiang Yin, Mischa Hepner, Kah Hiing J Ling, Andrew Cheng, Brian P Kearney, Srinivasan Ramanathan
{"title":"Effect of food on rilpivirine/emtricitabine/tenofovir disoproxil fumarate, an antiretroviral single-tablet regimen for the treatment of HIV infection.","authors":"Joseph M Custodio, Xiang Yin, Mischa Hepner, Kah Hiing J Ling, Andrew Cheng, Brian P Kearney, Srinivasan Ramanathan","doi":"10.1002/jcph.210","DOIUrl":null,"url":null,"abstract":"<p><p>The effect of food on rilpivirine/emtricitabine/tenofovir disoproxil fumarate single-tablet regimen (STR) was evaluated in healthy subjects. Subjects (N = 24) received rilpivirine/emtricitabine/tenofovir disoproxil fumarate (25/200/300 mg) under fasted or fed conditions (light [390 kcal, 12 g fat]; standard [540 kcal, 21 g fat]) followed by pharmacokinetic (PK) sampling. The 90% confidence interval (CI) of the geometric mean ratio for rilpivirine, emtricitabine, tenofovir exposure was estimated for fed versus fasted dosing and light versus standard meal, with equivalence boundaries of 80 - 125%. Safety was assessed throughout study. Twenty-three subjects completed the study; one discontinued due to protocol violation. Adverse events were mild to moderate. Emtricitabine PK was unaffected. Tenofovir AUCinf was 38% and 28% higher, respectively, with standard and light meal versus fasted. Rilpivirine AUCinf and Cmax were 16% and 26% higher with a standard, and 9% and 34% with a light meal, respectively, versus fasted. Compared to standard meal, the lower limit of rilpivirine AUClast and AUCinf when taken with the light meal were narrowly below the equivalence bounds (79.9 and 79.2, respectively), rilpivirine Cmax was narrowly above (129). Rilpivirine/emtricitabine/tenofovir disoproxil fumarate should be administered with food, which can be a standard or light meal. </p>","PeriodicalId":15536,"journal":{"name":"Journal of clinical pharmacology","volume":"54 4","pages":"378-85"},"PeriodicalIF":2.4000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/jcph.210","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jcph.210","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/11/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 18
Abstract
The effect of food on rilpivirine/emtricitabine/tenofovir disoproxil fumarate single-tablet regimen (STR) was evaluated in healthy subjects. Subjects (N = 24) received rilpivirine/emtricitabine/tenofovir disoproxil fumarate (25/200/300 mg) under fasted or fed conditions (light [390 kcal, 12 g fat]; standard [540 kcal, 21 g fat]) followed by pharmacokinetic (PK) sampling. The 90% confidence interval (CI) of the geometric mean ratio for rilpivirine, emtricitabine, tenofovir exposure was estimated for fed versus fasted dosing and light versus standard meal, with equivalence boundaries of 80 - 125%. Safety was assessed throughout study. Twenty-three subjects completed the study; one discontinued due to protocol violation. Adverse events were mild to moderate. Emtricitabine PK was unaffected. Tenofovir AUCinf was 38% and 28% higher, respectively, with standard and light meal versus fasted. Rilpivirine AUCinf and Cmax were 16% and 26% higher with a standard, and 9% and 34% with a light meal, respectively, versus fasted. Compared to standard meal, the lower limit of rilpivirine AUClast and AUCinf when taken with the light meal were narrowly below the equivalence bounds (79.9 and 79.2, respectively), rilpivirine Cmax was narrowly above (129). Rilpivirine/emtricitabine/tenofovir disoproxil fumarate should be administered with food, which can be a standard or light meal.
期刊介绍:
The Journal of Clinical Pharmacology (JCP) is a Human Pharmacology journal designed to provide physicians, pharmacists, research scientists, regulatory scientists, drug developers and academic colleagues a forum to present research in all aspects of Clinical Pharmacology. This includes original research in pharmacokinetics, pharmacogenetics/pharmacogenomics, pharmacometrics, physiologic based pharmacokinetic modeling, drug interactions, therapeutic drug monitoring, regulatory sciences (including unique methods of data analysis), special population studies, drug development, pharmacovigilance, womens’ health, pediatric pharmacology, and pharmacodynamics. Additionally, JCP publishes review articles, commentaries and educational manuscripts. The Journal also serves as an instrument to disseminate Public Policy statements from the American College of Clinical Pharmacology.