{"title":"Update on the neurobiology of schizophrenia: a role for extracellular microdomains.","authors":"D Shan, S Yates, R C Roberts, R E McCullumsmith","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The glutamate system includes presynaptic glutamatergic terminals, complex post-synaptic densities found on diverse types of neurons expressing glutamate receptors, as well as glutamate transporters and enzymes that facilitate the glutamate/glutamine cycle. Abnormalities of this system have been implicated in schizophrenia based on an accumulating body of evidence from postmortem, imaging, and preclinical studies. However, recent work has suggested that astrocytes may have more than a bystander role in the synchronization of neuronal responses in the brain. Converging evidence suggests that extrasynaptic glutamate microdomains are formed by astrocytes and may facilitate neuroplasticity via the modulation of extra-synaptic glutamate receptors on neuronal membranes within these domains. In this article the authors propose that the composition and localization of protein complexes in glutamate microdomains is abnormal in schizophrenia, leading to pathological neuroplastic changes in the structure and function of glutamate circuits in this illness.</p>","PeriodicalId":42192,"journal":{"name":"Minerva Psichiatrica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783347/pdf/nihms494771.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerva Psichiatrica","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
The glutamate system includes presynaptic glutamatergic terminals, complex post-synaptic densities found on diverse types of neurons expressing glutamate receptors, as well as glutamate transporters and enzymes that facilitate the glutamate/glutamine cycle. Abnormalities of this system have been implicated in schizophrenia based on an accumulating body of evidence from postmortem, imaging, and preclinical studies. However, recent work has suggested that astrocytes may have more than a bystander role in the synchronization of neuronal responses in the brain. Converging evidence suggests that extrasynaptic glutamate microdomains are formed by astrocytes and may facilitate neuroplasticity via the modulation of extra-synaptic glutamate receptors on neuronal membranes within these domains. In this article the authors propose that the composition and localization of protein complexes in glutamate microdomains is abnormal in schizophrenia, leading to pathological neuroplastic changes in the structure and function of glutamate circuits in this illness.
期刊介绍:
The journal Minerva Psichiatrica publishes scientific papers on psychiatry, psycology and psycopharmacology. Manuscripts may be submitted in the form of editorials, original articles, review articles, case reports, therapeutical notes, special articles and letters to the Editor. Manuscripts are expected to comply with the instructions to authors which conform to the Uniform Requirements for Manuscripts Submitted to Biomedical Editors by the International Committee of Medical Journal Editors (www.icmje.org). Articles not conforming to international standards will not be considered for acceptance.