A FINITE ELEMENT METHOD FOR ELASTICITY INTERFACE PROBLEMS WITH LOCALLY MODIFIED TRIANGULATIONS.

IF 1.3 4区 数学 Q1 MATHEMATICS
Hui Xie, Zhilin Li, Zhonghua Qiao
{"title":"A FINITE ELEMENT METHOD FOR ELASTICITY INTERFACE PROBLEMS WITH LOCALLY MODIFIED TRIANGULATIONS.","authors":"Hui Xie,&nbsp;Zhilin Li,&nbsp;Zhonghua Qiao","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A finite element method for elasticity systems with discontinuities in the coefficients and the flux across an arbitrary interface is proposed in this paper. The method is based on a Cartesian mesh with local modifications to the mesh. The total degrees of the freedom of the finite element method remains the same as that of the Cartesian mesh. The local modifications lead to a quasi-uniform body-fitted mesh from the original Cartesian mesh. The standard finite element theory and implementation are applicable. Numerical examples that involve discontinuous material coefficients and non-homogeneous jump in the flux across the interface demonstrate the efficiency of the proposed method.</p>","PeriodicalId":50301,"journal":{"name":"International Journal of Numerical Analysis and Modeling","volume":"8 2","pages":"189-200"},"PeriodicalIF":1.3000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777444/pdf/nihms495048.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Analysis and Modeling","FirstCategoryId":"100","ListUrlMain":"","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A finite element method for elasticity systems with discontinuities in the coefficients and the flux across an arbitrary interface is proposed in this paper. The method is based on a Cartesian mesh with local modifications to the mesh. The total degrees of the freedom of the finite element method remains the same as that of the Cartesian mesh. The local modifications lead to a quasi-uniform body-fitted mesh from the original Cartesian mesh. The standard finite element theory and implementation are applicable. Numerical examples that involve discontinuous material coefficients and non-homogeneous jump in the flux across the interface demonstrate the efficiency of the proposed method.

具有局部修正三角剖分的弹性界面问题的有限元方法。
本文提出了一种具有不连续系数和通过任意界面的通量的弹性系统的有限元方法。该方法基于笛卡尔网格,对网格进行局部修改。有限元法的总自由度与笛卡尔网格法的总自由度保持一致。局部修正后的网格由原来的笛卡尔网格得到拟均匀体拟合网格。标准有限元理论和实现是适用的。针对材料系数不连续和界面通量非均匀跳变的数值算例,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
9.10%
发文量
1
审稿时长
6-12 weeks
期刊介绍: The journal is directed to the broad spectrum of researchers in numerical methods throughout science and engineering, and publishes high quality original papers in all fields of numerical analysis and mathematical modeling including: numerical differential equations, scientific computing, linear algebra, control, optimization, and related areas of engineering and scientific applications. The journal welcomes the contribution of original developments of numerical methods, mathematical analysis leading to better understanding of the existing algorithms, and applications of numerical techniques to real engineering and scientific problems. Rigorous studies of the convergence of algorithms, their accuracy and stability, and their computational complexity are appropriate for this journal. Papers addressing new numerical algorithms and techniques, demonstrating the potential of some novel ideas, describing experiments involving new models and simulations for practical problems are also suitable topics for the journal. The journal welcomes survey articles which summarize state of art knowledge and present open problems of particular numerical techniques and mathematical models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信