Urszula T Iwaniec, Russell T Turner, Brenda J Smith, Barbara J Stoecker, Allison Rust, Bo Zhang, Vihas T Vasu, Kishorchandra Gohil, Carroll E Cross, Maret G Traber
{"title":"Evaluation of long-term vitamin E insufficiency or excess on bone mass, density, and microarchitecture in rodents.","authors":"Urszula T Iwaniec, Russell T Turner, Brenda J Smith, Barbara J Stoecker, Allison Rust, Bo Zhang, Vihas T Vasu, Kishorchandra Gohil, Carroll E Cross, Maret G Traber","doi":"10.1016/j.freeradbiomed.2013.09.004","DOIUrl":null,"url":null,"abstract":"<p><p>High dietary α-tocopherol levels reportedly result in osteopenia in growing rats, whereas α-tocopherol deficiency in α-tocopherol transfer protein-knockout (α-TTP-KO) mice results in increased cancellous bone mass. Because osteoporosis is a disease associated primarily with aging, we hypothesized that age-related bone loss would be attenuated in α-TTP-KO mice. Cancellous and cortical bone mass and microarchitecture were assessed using dual-energy X-ray absorptiometry and micro-computed tomography in 2-year-old α-TTP-KO and wild-type (WT) male and female mice fed dl-α-tocopherol acetate. In contrast to our expectations, differences in cancellous bone were not detected between WT and α-TTP-KO mice of either gender, and α-TTP-KO males had lower (p<0.05) cortical bone mass than WT males. We therefore evaluated bone mass, density, and microarchitecture in proximal femur of skeletally mature (8.5-month-old) male Sprague-Dawley rats fed diets containing low (15 IU/kg diet), adequate (75 IU/kg diet), or high (500 IU/kg diet) dl-α-tocopherol acetate for 13 weeks. Low dietary α-tocopherol did not increase bone mass. Furthermore, no reductions in cancellous or cortical bone mass were detected with high dietary α-tocopherol. Failure to detect increased bone mass in aged α-TTP-KO mice or bone changes in skeletally mature rats fed either low or high levels of α-tocopherol does not support the hypothesis that α-tocopherol has a negative impact on bone mass, density, or microarchitecture in rodents.</p>","PeriodicalId":505743,"journal":{"name":"Free radical biology & medicine","volume":" ","pages":"1209-1214"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.freeradbiomed.2013.09.004","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free radical biology & medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2013.09.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/9/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
High dietary α-tocopherol levels reportedly result in osteopenia in growing rats, whereas α-tocopherol deficiency in α-tocopherol transfer protein-knockout (α-TTP-KO) mice results in increased cancellous bone mass. Because osteoporosis is a disease associated primarily with aging, we hypothesized that age-related bone loss would be attenuated in α-TTP-KO mice. Cancellous and cortical bone mass and microarchitecture were assessed using dual-energy X-ray absorptiometry and micro-computed tomography in 2-year-old α-TTP-KO and wild-type (WT) male and female mice fed dl-α-tocopherol acetate. In contrast to our expectations, differences in cancellous bone were not detected between WT and α-TTP-KO mice of either gender, and α-TTP-KO males had lower (p<0.05) cortical bone mass than WT males. We therefore evaluated bone mass, density, and microarchitecture in proximal femur of skeletally mature (8.5-month-old) male Sprague-Dawley rats fed diets containing low (15 IU/kg diet), adequate (75 IU/kg diet), or high (500 IU/kg diet) dl-α-tocopherol acetate for 13 weeks. Low dietary α-tocopherol did not increase bone mass. Furthermore, no reductions in cancellous or cortical bone mass were detected with high dietary α-tocopherol. Failure to detect increased bone mass in aged α-TTP-KO mice or bone changes in skeletally mature rats fed either low or high levels of α-tocopherol does not support the hypothesis that α-tocopherol has a negative impact on bone mass, density, or microarchitecture in rodents.