{"title":"Serotonin: a novel bone mass controller may have implications for alveolar bone.","authors":"Carlo Galli, Guido Macaluso, Giovanni Passeri","doi":"10.1186/1477-5751-12-12","DOIUrl":null,"url":null,"abstract":"<p><p>As recent studies highlight the importance of alternative mechanisms in the control of bone turnover, new therapeutic approaches can be envisaged for bone diseases and periodontitis-induced bone loss. Recently, it has been shown that Fluoxetine and Venlafaxine, serotonin re-uptake inhibitors commonly used as antidepressants, can positively or negatively affect bone loss in rat models of induced periodontitis. Serotonin is a neurotransmitter that can be found within specific nuclei of the central nervous system, but can also be produced in the gut and be sequestered inside platelet granules. Although it is known to be mainly involved in the control of mood, sleep, and intestinal physiology, recent evidence has pointed at far reaching effects on bone metabolism, as a mediator of the effects of Lrp5, a membrane receptor commonly associated with Wnt canonical signaling and osteoblast differentiation. Deletion of Lrp5 in mice lead to increased expression of Tryptophan Hydroxylase 1, the gut isoform of the enzyme required for serotonin synthesis, thus increasing serum levels of serotonin. Serotonin, in turn, could bind to HTR1B receptors on osteoblasts and stop their proliferation by activating PKA and CREB.Although different groups have reported controversial results on the existence of an Lrp5-serotonin axis and the action of serotonin in bone remodeling, there is convincing evidence that serotonin modulators such as SSRIs can affect bone turnover. Consequently, the effects of this drug family on periodontal physiology should be thoroughly explored. </p>","PeriodicalId":73849,"journal":{"name":"Journal of negative results in biomedicine","volume":"12 ","pages":"12"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1477-5751-12-12","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of negative results in biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1477-5751-12-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
As recent studies highlight the importance of alternative mechanisms in the control of bone turnover, new therapeutic approaches can be envisaged for bone diseases and periodontitis-induced bone loss. Recently, it has been shown that Fluoxetine and Venlafaxine, serotonin re-uptake inhibitors commonly used as antidepressants, can positively or negatively affect bone loss in rat models of induced periodontitis. Serotonin is a neurotransmitter that can be found within specific nuclei of the central nervous system, but can also be produced in the gut and be sequestered inside platelet granules. Although it is known to be mainly involved in the control of mood, sleep, and intestinal physiology, recent evidence has pointed at far reaching effects on bone metabolism, as a mediator of the effects of Lrp5, a membrane receptor commonly associated with Wnt canonical signaling and osteoblast differentiation. Deletion of Lrp5 in mice lead to increased expression of Tryptophan Hydroxylase 1, the gut isoform of the enzyme required for serotonin synthesis, thus increasing serum levels of serotonin. Serotonin, in turn, could bind to HTR1B receptors on osteoblasts and stop their proliferation by activating PKA and CREB.Although different groups have reported controversial results on the existence of an Lrp5-serotonin axis and the action of serotonin in bone remodeling, there is convincing evidence that serotonin modulators such as SSRIs can affect bone turnover. Consequently, the effects of this drug family on periodontal physiology should be thoroughly explored.