Fibrogenic actions of acetaldehyde are β-catenin dependent but Wingless independent: a critical role of nucleoredoxin and reactive oxygen species in human hepatic stellate cells.
Jaime Arellanes-Robledo, Karina Reyes-Gordillo, Ruchi Shah, José Alfredo Domínguez-Rosales, Zamira Helena Hernández-Nazara, Francesco Ramirez, Marcos Rojkind, M Raj Lakshman
{"title":"Fibrogenic actions of acetaldehyde are β-catenin dependent but Wingless independent: a critical role of nucleoredoxin and reactive oxygen species in human hepatic stellate cells.","authors":"Jaime Arellanes-Robledo, Karina Reyes-Gordillo, Ruchi Shah, José Alfredo Domínguez-Rosales, Zamira Helena Hernández-Nazara, Francesco Ramirez, Marcos Rojkind, M Raj Lakshman","doi":"10.1016/j.freeradbiomed.2013.07.017","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated whether the fibrogenic actions of acetaldehyde, the immediate oxidation product of ethanol, are mediated via Wingless (WNT) and/or β-catenin pathways in human hepatic stellate cells (HSC). First, we show that both β-catenin small inhibitory RNA and a dominant negative-MYC expression vector markedly down-regulated the expressions of fibrogenic genes in freshly isolated HSC. We further show that acetaldehyde up-regulated platelet-derived growth factor receptor beta mRNA and protein expressions ranging from 4.0- to 7.2-fold (P<0.001). Acetaldehyde induced MYC and collagen type-1 alpha-2 mRNA and protein expressions were WNT independent because DKK1, an antagonist of the canonical WNT/β-catenin pathway, completely failed to block these inductions. Acetaldehyde increased phospho-glycogen synthase kinase-3 beta (GSK3B) protein by 31% (P<0.01), whereas phospho-β-catenin protein decreased by 50% (P ≤ 0.01). Significantly, in contrast to 43% (P<0.01) inhibition of β-catenin nuclear translocation in nucleoredoxin (NXN)-overexpressed HSC, acetaldehyde profoundly stimulated β-catenin nuclear translocation by 51%, (P<0.01). Acetaldehyde also increased the cellular reactive oxygen species level 2-fold (P<0.001) with a concomitant 2-fold (P<0.001) increase in 4-hydroxynonenal adducts. Conversely, there was a 44% decrease (P<0.001) in glutathione levels with a concomitant 76% (P<0.001) decrease in the level of NXN/ disheveled (DVL) complex. Based on these findings, we conclude that actions of acetaldehyde are mediated by a mechanism that inactivates NXN by releasing DVL, leading to the inactivation of GSK3B, and thereby blocks β-catenin phosphorylation and degradation. Thus, the stabilized β-catenin translocates to the nucleus where it up-regulates the fibrogenic pathway genes. This novel mechanism of action of acetaldehyde has the potential for therapeutic interventions in liver fibrosis induced by alcohol.</p>","PeriodicalId":505743,"journal":{"name":"Free radical biology & medicine","volume":" ","pages":"1487-1496"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.freeradbiomed.2013.07.017","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free radical biology & medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2013.07.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/7/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
We investigated whether the fibrogenic actions of acetaldehyde, the immediate oxidation product of ethanol, are mediated via Wingless (WNT) and/or β-catenin pathways in human hepatic stellate cells (HSC). First, we show that both β-catenin small inhibitory RNA and a dominant negative-MYC expression vector markedly down-regulated the expressions of fibrogenic genes in freshly isolated HSC. We further show that acetaldehyde up-regulated platelet-derived growth factor receptor beta mRNA and protein expressions ranging from 4.0- to 7.2-fold (P<0.001). Acetaldehyde induced MYC and collagen type-1 alpha-2 mRNA and protein expressions were WNT independent because DKK1, an antagonist of the canonical WNT/β-catenin pathway, completely failed to block these inductions. Acetaldehyde increased phospho-glycogen synthase kinase-3 beta (GSK3B) protein by 31% (P<0.01), whereas phospho-β-catenin protein decreased by 50% (P ≤ 0.01). Significantly, in contrast to 43% (P<0.01) inhibition of β-catenin nuclear translocation in nucleoredoxin (NXN)-overexpressed HSC, acetaldehyde profoundly stimulated β-catenin nuclear translocation by 51%, (P<0.01). Acetaldehyde also increased the cellular reactive oxygen species level 2-fold (P<0.001) with a concomitant 2-fold (P<0.001) increase in 4-hydroxynonenal adducts. Conversely, there was a 44% decrease (P<0.001) in glutathione levels with a concomitant 76% (P<0.001) decrease in the level of NXN/ disheveled (DVL) complex. Based on these findings, we conclude that actions of acetaldehyde are mediated by a mechanism that inactivates NXN by releasing DVL, leading to the inactivation of GSK3B, and thereby blocks β-catenin phosphorylation and degradation. Thus, the stabilized β-catenin translocates to the nucleus where it up-regulates the fibrogenic pathway genes. This novel mechanism of action of acetaldehyde has the potential for therapeutic interventions in liver fibrosis induced by alcohol.