{"title":"Exploiting Leishmania tarentolae cell-free extracts for the synthesis of human solute carriers.","authors":"Suzan Ruehrer, Hartmut Michel","doi":"10.3109/09687688.2013.807362","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-free protein production offers a versatile alternative to complement in vivo expression systems. However, usage of prokaryotic cell-free systems often leads to non-functional proteins. We modified a previously designed cell-free system based on the protozoan Leishmania tarentolae, a parasite of the Moorish gecko Tarentola mauritanica, together with a species-independent translational sequences-based plasmid to produce human membrane proteins in 2 hours reaction time. We successfully established all four commonly used expression modes for cell-free synthesis of membrane proteins with a human organic anion transporter, SLC17A3, as a model membrane protein: (i) As precipitates without the addition of any hydrophobic environment, (ii) in the presence of detergents, (iii) with the addition of liposomes, and (iv) supplemented with nanodiscs. We utilized this adapted system to synthesize 22 human solute carriers from 20 different families. Our results demonstrate the capability of the Leishmania tarentolae cell-free system for the production of a huge variety of human solute carriers in the precipitate mode. Furthermore, purified SLC17A3 shows the formation of an oligomeric state.</p>","PeriodicalId":18858,"journal":{"name":"Molecular Membrane Biology","volume":"30 4","pages":"288-302"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/09687688.2013.807362","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Membrane Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/09687688.2013.807362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/6/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 10
Abstract
Cell-free protein production offers a versatile alternative to complement in vivo expression systems. However, usage of prokaryotic cell-free systems often leads to non-functional proteins. We modified a previously designed cell-free system based on the protozoan Leishmania tarentolae, a parasite of the Moorish gecko Tarentola mauritanica, together with a species-independent translational sequences-based plasmid to produce human membrane proteins in 2 hours reaction time. We successfully established all four commonly used expression modes for cell-free synthesis of membrane proteins with a human organic anion transporter, SLC17A3, as a model membrane protein: (i) As precipitates without the addition of any hydrophobic environment, (ii) in the presence of detergents, (iii) with the addition of liposomes, and (iv) supplemented with nanodiscs. We utilized this adapted system to synthesize 22 human solute carriers from 20 different families. Our results demonstrate the capability of the Leishmania tarentolae cell-free system for the production of a huge variety of human solute carriers in the precipitate mode. Furthermore, purified SLC17A3 shows the formation of an oligomeric state.
期刊介绍:
Cessation.
Molecular Membrane Biology provides a forum for high quality research that serves to advance knowledge in molecular aspects of biological membrane structure and function. The journal welcomes submissions of original research papers and reviews in the following areas:
• Membrane receptors and signalling
• Membrane transporters, pores and channels
• Synthesis and structure of membrane proteins
• Membrane translocation and targeting
• Lipid organisation and asymmetry
• Model membranes
• Membrane trafficking
• Cytoskeletal and extracellular membrane interactions
• Cell adhesion and intercellular interactions
• Molecular dynamics and molecular modelling of membranes.
• Antimicrobial peptides.