Multiple samples aCGH analysis for rare CNVs detection.

Maciej Sykulski, Tomasz Gambin, Magdalena Bartnik, Katarzyna Derwińska, Barbara Wiśniowiecka-Kowalnik, Paweł Stankiewicz, Anna Gambin
{"title":"Multiple samples aCGH analysis for rare CNVs detection.","authors":"Maciej Sykulski,&nbsp;Tomasz Gambin,&nbsp;Magdalena Bartnik,&nbsp;Katarzyna Derwińska,&nbsp;Barbara Wiśniowiecka-Kowalnik,&nbsp;Paweł Stankiewicz,&nbsp;Anna Gambin","doi":"10.1186/2043-9113-3-12","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>DNA copy number variations (CNV) constitute an important source of genetic variability. The standard method used for CNV detection is array comparative genomic hybridization (aCGH).</p><p><strong>Results: </strong>We propose a novel multiple sample aCGH analysis methodology aiming in rare CNVs detection. In contrast to the majority of previous approaches, which deal with cancer datasets, we focus on constitutional genomic abnormalities identified in a diverse spectrum of diseases in human. Our method is tested on exon targeted aCGH array of 366 patients affected with developmental delay/intellectual disability, epilepsy, or autism. The proposed algorithms can be applied as a post-processing filtering to any given segmentation method.</p><p><strong>Conclusions: </strong>Thanks to the additional information obtained from multiple samples, we could efficiently detect significant segments corresponding to rare CNVs responsible for pathogenic changes. The robust statistical framework applied in our method enables to eliminate the influence of widespread technical artifact termed 'waves'.</p>","PeriodicalId":73663,"journal":{"name":"Journal of clinical bioinformatics","volume":" ","pages":"12"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2043-9113-3-12","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2043-9113-3-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Background: DNA copy number variations (CNV) constitute an important source of genetic variability. The standard method used for CNV detection is array comparative genomic hybridization (aCGH).

Results: We propose a novel multiple sample aCGH analysis methodology aiming in rare CNVs detection. In contrast to the majority of previous approaches, which deal with cancer datasets, we focus on constitutional genomic abnormalities identified in a diverse spectrum of diseases in human. Our method is tested on exon targeted aCGH array of 366 patients affected with developmental delay/intellectual disability, epilepsy, or autism. The proposed algorithms can be applied as a post-processing filtering to any given segmentation method.

Conclusions: Thanks to the additional information obtained from multiple samples, we could efficiently detect significant segments corresponding to rare CNVs responsible for pathogenic changes. The robust statistical framework applied in our method enables to eliminate the influence of widespread technical artifact termed 'waves'.

Abstract Image

Abstract Image

Abstract Image

多样本aCGH分析用于罕见CNVs检测。
背景:DNA拷贝数变异(CNV)是遗传变异的重要来源。用于CNV检测的标准方法是阵列比较基因组杂交(aCGH)。结果:我们提出了一种针对罕见CNVs检测的多样本aCGH分析方法。与之前处理癌症数据集的大多数方法不同,我们专注于在人类多种疾病中确定的体质基因组异常。我们的方法在366例发育迟缓/智力残疾、癫痫或自闭症患者的外显子靶向aCGH阵列上进行了测试。该算法可作为任何分割方法的后处理滤波。结论:由于从多个样本中获得了额外的信息,我们可以有效地检测出导致致病性变化的罕见CNVs对应的重要片段。在我们的方法中应用的健壮的统计框架能够消除被称为“波”的广泛的技术工件的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信