NONPARAMETRIC BENCHMARK ANALYSIS IN RISK ASSESSMENT: A COMPARATIVE STUDY BY SIMULATION AND DATA ANALYSIS.

Rabi Bhattacharya, Lizhen Lin
{"title":"NONPARAMETRIC BENCHMARK ANALYSIS IN RISK ASSESSMENT: A COMPARATIVE STUDY BY SIMULATION AND DATA ANALYSIS.","authors":"Rabi Bhattacharya,&nbsp;Lizhen Lin","doi":"10.1007/s13571-011-0019-7","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the finite sample performance of a new nonparametric method for bioassay and benchmark analysis in risk assessment, which averages isotonic MLEs based on disjoint subgroups of dosages, and whose asymptotic behavior is essentially optimal (Bhattacharya and Lin (2010)). It is compared with three other methods, including the leading kernel-based method, called <i>DNP</i>, due to Dette et al. (2005) and Dette and Scheder (2010). In simulation studies, the present method, termed <i>NAM</i>, outperforms the <i>DNP</i> in the majority of cases considered, although both methods generally do well. In small samples, NAM and DNP both outperform the MLE.</p>","PeriodicalId":85487,"journal":{"name":"Sankhya. Series B. [Methodological.]","volume":"73 1","pages":"144-163"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13571-011-0019-7","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sankhya. Series B. [Methodological.]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13571-011-0019-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We consider the finite sample performance of a new nonparametric method for bioassay and benchmark analysis in risk assessment, which averages isotonic MLEs based on disjoint subgroups of dosages, and whose asymptotic behavior is essentially optimal (Bhattacharya and Lin (2010)). It is compared with three other methods, including the leading kernel-based method, called DNP, due to Dette et al. (2005) and Dette and Scheder (2010). In simulation studies, the present method, termed NAM, outperforms the DNP in the majority of cases considered, although both methods generally do well. In small samples, NAM and DNP both outperform the MLE.

风险评估中的非参数基准分析:模拟与数据分析的比较研究。
我们考虑了一种新的用于风险评估的生物测定和基准分析的非参数方法的有限样本性能,该方法基于不相交的剂量亚组平均等渗MLEs,其渐近行为本质上是最优的(Bhattacharya和Lin(2010))。将其与其他三种方法进行比较,包括由Dette et al.(2005)和Dette and Scheder(2010)提出的基于核的领先方法DNP。在模拟研究中,目前的方法,称为NAM,在考虑的大多数情况下优于DNP,尽管两种方法通常都做得很好。在小样本中,NAM和DNP都优于MLE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信