{"title":"Regulation of SREBP-Mediated Gene Expression.","authors":"Zhao Xiaoping, Yang Fajun","doi":"10.3724/SP.J.1260.2012.20034","DOIUrl":null,"url":null,"abstract":"<p><p>The sterol regulatory element-binding proteins (SREBPs) play an important role in regulating lipid homeostasis. Translated as inactive precursors that are localized in the endoplasmic reticulum (ER) membrane, SREBPs are activated through a proteolytic process in response to intracellular demands for lipids. The cleaved amino-terminal fragments of SREBPs then translocate into the nucleus as homodimers and stimulate the transcription of target genes by binding to the sterol response elements (SREs) in their promoters. Numerous studies using cell culture or genetically modified mouse models have demonstrated that the major target genes of SREBPs include rate-limiting enzymes in the pathways of fatty acid and cholesterol biosynthesis as well as the low-density lipoprotein (LDL) receptor. The proteolytic maturation of SREBPs has been well studied in the past. However, recent studies have also improved our understanding on the regulation of nuclear SREBPs. In the nucleus, SREBPs interact with specific transcriptional cofactors, such as CBP/p300 and the Mediator complex, resulting in stimulation or inhibition of their transcriptional activities. In addition, nuclear SREBP protein stability is dynamically regulated by phosphorylation and acetylation. Such protein-protein interactions and post-translational modifications elegantly link the extracellular signals, such as insulin, or intracellular signals, such as oxidative stress, to lipid biosynthesis by modulating the transcriptional activity of SREBPs. Under normal physiological states, lipid homeostasis is strictly maintained. However, the SREBP pathways are often dysregulated in pathophysiological conditions, such as obesity, type 2 diabetes, and fatty liver diseases. Thus, the novel regulatory mechanisms of SREBPs may provide new opportunities for fighting these metabolic diseases.</p>","PeriodicalId":62275,"journal":{"name":"生物物理学报","volume":"28 4","pages":"287-294"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3724/SP.J.1260.2012.20034","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理学报","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3724/SP.J.1260.2012.20034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
The sterol regulatory element-binding proteins (SREBPs) play an important role in regulating lipid homeostasis. Translated as inactive precursors that are localized in the endoplasmic reticulum (ER) membrane, SREBPs are activated through a proteolytic process in response to intracellular demands for lipids. The cleaved amino-terminal fragments of SREBPs then translocate into the nucleus as homodimers and stimulate the transcription of target genes by binding to the sterol response elements (SREs) in their promoters. Numerous studies using cell culture or genetically modified mouse models have demonstrated that the major target genes of SREBPs include rate-limiting enzymes in the pathways of fatty acid and cholesterol biosynthesis as well as the low-density lipoprotein (LDL) receptor. The proteolytic maturation of SREBPs has been well studied in the past. However, recent studies have also improved our understanding on the regulation of nuclear SREBPs. In the nucleus, SREBPs interact with specific transcriptional cofactors, such as CBP/p300 and the Mediator complex, resulting in stimulation or inhibition of their transcriptional activities. In addition, nuclear SREBP protein stability is dynamically regulated by phosphorylation and acetylation. Such protein-protein interactions and post-translational modifications elegantly link the extracellular signals, such as insulin, or intracellular signals, such as oxidative stress, to lipid biosynthesis by modulating the transcriptional activity of SREBPs. Under normal physiological states, lipid homeostasis is strictly maintained. However, the SREBP pathways are often dysregulated in pathophysiological conditions, such as obesity, type 2 diabetes, and fatty liver diseases. Thus, the novel regulatory mechanisms of SREBPs may provide new opportunities for fighting these metabolic diseases.