Wavelet-based protocols for ion channel electrophysiology.

Q1 Biochemistry, Genetics and Molecular Biology
Armin Kargol
{"title":"Wavelet-based protocols for ion channel electrophysiology.","authors":"Armin Kargol","doi":"10.1186/2046-1682-6-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fluctuation-induced phenomena caused by both random and deterministic stimuli have been previously studied in a variety of contexts. They are based on the interplay between the spectro-temporal patterns of the signal and the kinetics of the system it is applied to. The aim of this study was to develop a method for designing fluctuating inputs into nonlinear system which would elicit the most desired system output and to implement the method to studies of ion channels.</p><p><strong>Results: </strong>We describe an algorithm based on constructing the input as a superposition of wavelets and optimizing it according to a selected cost functional. The algorithm is applied to ion channel electrophysiology where the input is the fluctuating voltage delivered through a patch-clamp experimental apparatus and the output is the whole-cell ionic current. The algorithm is optimized to aid selection of Markov models of the gating kinetics of the voltage-gated Shaker K+ channel and tested by comparison of numerically obtained ionic currents predicted by different models with experimental data obtained from the Shaker K+ channels. Other applications and optimization criteria are also suggested.</p><p><strong>Conclusion: </strong>The method described in this paper can be useful in development and testing of models of ion channel gating kinetics, developing voltage inputs that optimize certain nonequilibrium phenomena in ion channels, such as the kinetic focusing, and potentially has applications to other fields.</p>","PeriodicalId":9045,"journal":{"name":"BMC Biophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2046-1682-6-3","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2046-1682-6-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 9

Abstract

Background: Fluctuation-induced phenomena caused by both random and deterministic stimuli have been previously studied in a variety of contexts. They are based on the interplay between the spectro-temporal patterns of the signal and the kinetics of the system it is applied to. The aim of this study was to develop a method for designing fluctuating inputs into nonlinear system which would elicit the most desired system output and to implement the method to studies of ion channels.

Results: We describe an algorithm based on constructing the input as a superposition of wavelets and optimizing it according to a selected cost functional. The algorithm is applied to ion channel electrophysiology where the input is the fluctuating voltage delivered through a patch-clamp experimental apparatus and the output is the whole-cell ionic current. The algorithm is optimized to aid selection of Markov models of the gating kinetics of the voltage-gated Shaker K+ channel and tested by comparison of numerically obtained ionic currents predicted by different models with experimental data obtained from the Shaker K+ channels. Other applications and optimization criteria are also suggested.

Conclusion: The method described in this paper can be useful in development and testing of models of ion channel gating kinetics, developing voltage inputs that optimize certain nonequilibrium phenomena in ion channels, such as the kinetic focusing, and potentially has applications to other fields.

Abstract Image

Abstract Image

Abstract Image

基于小波的离子通道电生理协议。
背景:随机和确定性刺激引起的波动诱导现象已经在各种背景下进行了研究。它们是基于信号的光谱-时间模式和它所应用的系统动力学之间的相互作用。本研究的目的是开发一种设计非线性系统波动输入的方法,以获得最理想的系统输出,并将该方法应用于离子通道的研究。结果:我们描述了一种基于将输入构建为小波叠加并根据选定的代价函数对其进行优化的算法。该算法应用于离子通道电生理,其中输入是通过膜片钳实验装置传递的波动电压,输出是整个细胞的离子电流。对算法进行了优化,以帮助选择电压门控激振器K+通道的门控动力学的马尔可夫模型,并将不同模型预测的数值离子电流与从激振器K+通道获得的实验数据进行了比较。并提出了其他应用和优化标准。结论:本文所描述的方法可用于开发和测试离子通道门控动力学模型,开发优化离子通道中某些非平衡现象(如动力学聚焦)的电压输入,并可能应用于其他领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Biophysics
BMC Biophysics BIOPHYSICS-
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信