Revisiting dipolar relaxation of a homonuclear spin pair in the presence of a radio frequency field: A tutorial

IF 2.624
Yuki Toyama , Lewis E. Kay
{"title":"Revisiting dipolar relaxation of a homonuclear spin pair in the presence of a radio frequency field: A tutorial","authors":"Yuki Toyama ,&nbsp;Lewis E. Kay","doi":"10.1016/j.jmro.2022.100065","DOIUrl":null,"url":null,"abstract":"<div><p>NMR studies exploit spin relaxation in a multitude of different ways, providing information on molecular structure and dynamics. Calculating the relaxation rates of NMR active nuclei in multi-spin systems is often a prerequisite for the proper analysis of experimental data. For many researchers the calculations appear complex, often involving different basis sets or expressions describing relaxation in different frames. In this tutorial paper we derive expressions for dipolar relaxation of an <em>I</em>-<em>S</em> two spin spin-system in the presence of a <em>B</em><sub>1</sub> radio frequency field, where spins <em>I</em> and <em>S</em> can be either like or unlike. We consider two different approaches for the derivation of relaxation elements that have been used in the literature, including one where a series of transformations are carried out to the interaction representation of the effective field, comprising <em>B</em><sub>1</sub> and Zeeman components. A second procedure is based on the well-known Solomon equations. We show that both approaches lead to identical results, in the process presenting a pedagogical description of relaxation theory.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"12 ","pages":"Article 100065"},"PeriodicalIF":2.6240,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441022000358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

NMR studies exploit spin relaxation in a multitude of different ways, providing information on molecular structure and dynamics. Calculating the relaxation rates of NMR active nuclei in multi-spin systems is often a prerequisite for the proper analysis of experimental data. For many researchers the calculations appear complex, often involving different basis sets or expressions describing relaxation in different frames. In this tutorial paper we derive expressions for dipolar relaxation of an I-S two spin spin-system in the presence of a B1 radio frequency field, where spins I and S can be either like or unlike. We consider two different approaches for the derivation of relaxation elements that have been used in the literature, including one where a series of transformations are carried out to the interaction representation of the effective field, comprising B1 and Zeeman components. A second procedure is based on the well-known Solomon equations. We show that both approaches lead to identical results, in the process presenting a pedagogical description of relaxation theory.

Abstract Image

在射频场存在下重访同核自旋对的偶极弛豫:教程
核磁共振研究以多种不同的方式利用自旋弛豫,提供分子结构和动力学的信息。计算多自旋系统中核磁共振活性核的弛豫速率通常是正确分析实验数据的先决条件。对于许多研究人员来说,计算显得很复杂,通常涉及不同的基集或描述不同框架中的松弛的表达式。在这篇论文中,我们推导了在B1射频场存在下I-S双自旋系统的偶极弛豫表达式,其中自旋I和自旋S可以是相似的,也可以是不同的。我们考虑了文献中使用的两种不同的方法来推导松弛元素,其中一种方法是对有效场的相互作用表示进行一系列变换,包括B1和Zeeman分量。第二个程序是基于著名的所罗门方程。我们表明,这两种方法导致相同的结果,在提出松弛理论的教学描述的过程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信