MISSING DATA IN REGRESSION MODELS FOR NON-COMMENSURATE MULTIPLE OUTCOMES.

IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY
Revstat-Statistical Journal Pub Date : 2011-03-01
Armando Teixeira-Pinto, Sharon-Lise Normand
{"title":"MISSING DATA IN REGRESSION MODELS FOR NON-COMMENSURATE MULTIPLE OUTCOMES.","authors":"Armando Teixeira-Pinto,&nbsp;Sharon-Lise Normand","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Biomedical research often involves the measurement of multiple outcomes in different scales (continuous, binary and ordinal). A common approach for the analysis of such data is to ignore the potential correlation among the outcomes and model each outcome separately. This can lead not only to loss of efficiency but also to biased estimates in the presence of missing data. We address the problem of missing data in the context of multiple non-commensurate outcomes. The consequences of missing data when using likelihood and quasi-likelihood methods are described, and an extension of these methods to the situation of missing observations in the outcomes is proposed. Two real data examples illustrate the methodology.</p>","PeriodicalId":54459,"journal":{"name":"Revstat-Statistical Journal","volume":"9 1","pages":"37-55"},"PeriodicalIF":0.7000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595565/pdf/nihms307399.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revstat-Statistical Journal","FirstCategoryId":"100","ListUrlMain":"","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomedical research often involves the measurement of multiple outcomes in different scales (continuous, binary and ordinal). A common approach for the analysis of such data is to ignore the potential correlation among the outcomes and model each outcome separately. This can lead not only to loss of efficiency but also to biased estimates in the presence of missing data. We address the problem of missing data in the context of multiple non-commensurate outcomes. The consequences of missing data when using likelihood and quasi-likelihood methods are described, and an extension of these methods to the situation of missing observations in the outcomes is proposed. Two real data examples illustrate the methodology.

非相称多结果回归模型中的缺失数据。
生物医学研究通常涉及不同尺度(连续、二元和有序)的多个结果的测量。分析此类数据的常见方法是忽略结果之间的潜在相关性,并分别为每个结果建模。这不仅会导致效率的损失,而且还会在缺少数据的情况下导致有偏差的估计。我们解决了多个不相称结果背景下的数据缺失问题。描述了使用似然和准似然方法时缺失数据的后果,并提出了将这些方法扩展到结果中缺失观测值的情况。两个真实数据示例说明了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revstat-Statistical Journal
Revstat-Statistical Journal STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
11.10%
发文量
1
审稿时长
>12 weeks
期刊介绍: The aim of REVSTAT Statistical Journal is to publish articles of high scientific content, developing Statistical Science focused on innovative theory, methods and applications in different areas of knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信