Xiangxin Zhu, Max Welling, Fang Jin, John Lowengrub
{"title":"Predicting Simulation Parameters of Biological Systems Using a Gaussian Process Model.","authors":"Xiangxin Zhu, Max Welling, Fang Jin, John Lowengrub","doi":"10.1002/sam.11163","DOIUrl":null,"url":null,"abstract":"<p><p>Finding optimal parameters for simulating biological systems is usually a very difficult and expensive task in systems biology. Brute force searching is infeasible in practice because of the huge (often infinite) search space. In this article, we propose predicting the parameters efficiently by learning the relationship between system outputs and parameters using regression. However, the conventional parametric regression models suffer from two issues, thus are not applicable to this problem. First, restricting the regression function as a certain fixed type (e.g. linear, polynomial, etc.) introduces too strong assumptions that reduce the model flexibility. Second, conventional regression models fail to take into account the fact that a fixed parameter value may correspond to multiple different outputs due to the stochastic nature of most biological simulations, and the existence of a potentially large number of other factors that affect the simulation outputs. We propose a novel approach based on a Gaussian process model that addresses the two issues jointly. We apply our approach to a tumor vessel growth model and the feedback Wright-Fisher model. The experimental results show that our method can predict the parameter values of both of the two models with high accuracy.</p>","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"5 6","pages":"509-522"},"PeriodicalIF":2.1000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/sam.11163","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11163","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 9
Abstract
Finding optimal parameters for simulating biological systems is usually a very difficult and expensive task in systems biology. Brute force searching is infeasible in practice because of the huge (often infinite) search space. In this article, we propose predicting the parameters efficiently by learning the relationship between system outputs and parameters using regression. However, the conventional parametric regression models suffer from two issues, thus are not applicable to this problem. First, restricting the regression function as a certain fixed type (e.g. linear, polynomial, etc.) introduces too strong assumptions that reduce the model flexibility. Second, conventional regression models fail to take into account the fact that a fixed parameter value may correspond to multiple different outputs due to the stochastic nature of most biological simulations, and the existence of a potentially large number of other factors that affect the simulation outputs. We propose a novel approach based on a Gaussian process model that addresses the two issues jointly. We apply our approach to a tumor vessel growth model and the feedback Wright-Fisher model. The experimental results show that our method can predict the parameter values of both of the two models with high accuracy.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.