Feng Zhao, Jian Peng, Joe Debartolo, Karl F Freed, Tobin R Sosnick, Jinbo Xu
{"title":"A Probabilistic Graphical Model for Ab Initio Folding.","authors":"Feng Zhao, Jian Peng, Joe Debartolo, Karl F Freed, Tobin R Sosnick, Jinbo Xu","doi":"10.1007/978-3-642-02008-7_5","DOIUrl":null,"url":null,"abstract":"<p><p>Despite significant progress in recent years, <i>ab initio</i> folding is still one of the most challenging problems in structural biology. This paper presents a probabilistic graphical model for ab initio folding, which employs Conditional Random Fields (CRFs) and directional statistics to model the relationship between the primary sequence of a protein and its three-dimensional structure. Different from the widely-used fragment assembly method and the lattice model for protein folding, our graphical model can explore protein conformations in a continuous space according to their probability. The probability of a protein conformation reflects its stability and is estimated from PSI-BLAST sequence profile and predicted secondary structure. Experimental results indicate that this new method compares favorably with the fragment assembly method and the lattice model.</p>","PeriodicalId":74675,"journal":{"name":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","volume":"5541 ","pages":"59-73"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-642-02008-7_5","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-642-02008-7_5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Despite significant progress in recent years, ab initio folding is still one of the most challenging problems in structural biology. This paper presents a probabilistic graphical model for ab initio folding, which employs Conditional Random Fields (CRFs) and directional statistics to model the relationship between the primary sequence of a protein and its three-dimensional structure. Different from the widely-used fragment assembly method and the lattice model for protein folding, our graphical model can explore protein conformations in a continuous space according to their probability. The probability of a protein conformation reflects its stability and is estimated from PSI-BLAST sequence profile and predicted secondary structure. Experimental results indicate that this new method compares favorably with the fragment assembly method and the lattice model.