A Bogaert-Buchmann, M Poittevin, C Po, D Dupont, C Sebrié, Y Tomita, A Trandinh, J Seylaz, E Pinard, P Méric, N Kubis, B Gillet
{"title":"Spatial and temporal MRI profile of ischemic tissue after the acute stages of a permanent mouse model of stroke.","authors":"A Bogaert-Buchmann, M Poittevin, C Po, D Dupont, C Sebrié, Y Tomita, A Trandinh, J Seylaz, E Pinard, P Méric, N Kubis, B Gillet","doi":"10.2174/1874440001307010004","DOIUrl":null,"url":null,"abstract":"<p><strong>Object: </strong>To characterize the progression of injured tissue resulting from a permanent focal cerebral ischemia after the acute phase, Magnetic Resonance Imaging (MRI) monitoring was performed on adult male C57BL/6J mice in the subacute stages, and correlated to histological analyses.</p><p><strong>Material and methods: </strong>Lesions were induced by electrocoagulation of the middle cerebral artery. Serial MRI measurements and weighted-images (T2, T1, T2* and Diffusion Tensor Imaging) were performed on a 9.4T scanner. Histological data (Cresyl-Violet staining and laminin-, Iba1- and GFAP-immunostainings) were obtained 1 and 2 weeks after the stroke.</p><p><strong>Results: </strong>Two days after stroke, tissues assumed to correspond to the infarct core, were detected as a hyperintensity signal area in T2-weighted images. One week later, low-intensity signal areas appeared. Longitudinal MRI study showed that these areas remained present over the following week, and was mainly linked to a drop of the T2 relaxation time value in the corresponding tissues. Correlation with histological data and immuno-histochemistry showed that these areas corresponded to microglial cells.</p><p><strong>Conclusion: </strong>The present data provide, for the first time detailed MRI parameters of microglial cells dynamics, allowing its non-invasive monitoring during the chronic stages of a stroke. This could be particularly interesting in regards to emerging anti-inflammatory stroke therapies.</p>","PeriodicalId":88176,"journal":{"name":"","volume":"7 ","pages":"4-14"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0f/48/TONIJ-7-4.PMC3580904.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874440001307010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/2/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Object: To characterize the progression of injured tissue resulting from a permanent focal cerebral ischemia after the acute phase, Magnetic Resonance Imaging (MRI) monitoring was performed on adult male C57BL/6J mice in the subacute stages, and correlated to histological analyses.
Material and methods: Lesions were induced by electrocoagulation of the middle cerebral artery. Serial MRI measurements and weighted-images (T2, T1, T2* and Diffusion Tensor Imaging) were performed on a 9.4T scanner. Histological data (Cresyl-Violet staining and laminin-, Iba1- and GFAP-immunostainings) were obtained 1 and 2 weeks after the stroke.
Results: Two days after stroke, tissues assumed to correspond to the infarct core, were detected as a hyperintensity signal area in T2-weighted images. One week later, low-intensity signal areas appeared. Longitudinal MRI study showed that these areas remained present over the following week, and was mainly linked to a drop of the T2 relaxation time value in the corresponding tissues. Correlation with histological data and immuno-histochemistry showed that these areas corresponded to microglial cells.
Conclusion: The present data provide, for the first time detailed MRI parameters of microglial cells dynamics, allowing its non-invasive monitoring during the chronic stages of a stroke. This could be particularly interesting in regards to emerging anti-inflammatory stroke therapies.