Multi-view spectral clustering and its chemical application.

Q4 Pharmacology, Toxicology and Pharmaceutics
Adeshola A Adefioye, Xinhai Liu, Bart De Moor
{"title":"Multi-view spectral clustering and its chemical application.","authors":"Adeshola A Adefioye,&nbsp;Xinhai Liu,&nbsp;Bart De Moor","doi":"10.1504/IJCBDD.2013.052200","DOIUrl":null,"url":null,"abstract":"<p><p>Clustering is an unsupervised method that allows researchers to group objects and gather information about their relationships. In chemoinformatics, clustering enables hypotheses to be drawn about a compound's biological, chemical and physical property in comparison to another. We introduce a novel improved spectral clustering algorithm, proposed for chemical compound clustering, using multiple data sources. Tensor-based spectral methods, used in this paper, provide chemically appropriate and statistically significant results when attempting to cluster compounds from both the GSK-Chembl Malaria data set and the Zinc database. Spectral clustering algorithms based on the tensor method give robust results on the mid-size compound sets used here. The goal of this paper is to present the clustering of chemical compounds, using a tensor-based multi-view method which proves of value to the medicinal chemistry community. Our findings show compounds of extremely different chemotypes clustering together, this is a hint to the chemogenomics nature of our method.</p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":" ","pages":"32-49"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJCBDD.2013.052200","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2013.052200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/2/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 3

Abstract

Clustering is an unsupervised method that allows researchers to group objects and gather information about their relationships. In chemoinformatics, clustering enables hypotheses to be drawn about a compound's biological, chemical and physical property in comparison to another. We introduce a novel improved spectral clustering algorithm, proposed for chemical compound clustering, using multiple data sources. Tensor-based spectral methods, used in this paper, provide chemically appropriate and statistically significant results when attempting to cluster compounds from both the GSK-Chembl Malaria data set and the Zinc database. Spectral clustering algorithms based on the tensor method give robust results on the mid-size compound sets used here. The goal of this paper is to present the clustering of chemical compounds, using a tensor-based multi-view method which proves of value to the medicinal chemistry community. Our findings show compounds of extremely different chemotypes clustering together, this is a hint to the chemogenomics nature of our method.

多视点光谱聚类及其化学应用。
聚类是一种无监督的方法,它允许研究人员对对象进行分组并收集有关它们之间关系的信息。在化学信息学中,聚类使我们能够对一种化合物的生物、化学和物理性质进行假设,并与另一种化合物进行比较。本文提出了一种新的改进的光谱聚类算法,用于多数据源的化合物聚类。本文中使用的基于张量的光谱方法,在试图从GSK-Chembl Malaria数据集和Zinc数据库中聚类化合物时,提供了化学上适当且统计上显著的结果。基于张量方法的谱聚类算法在这里使用的中等大小的复合集上给出了鲁棒的结果。本文的目的是利用一种基于张量的多视图方法来呈现化合物的聚类,这对药物化学界具有一定的价值。我们的发现显示了非常不同的化学型化合物聚集在一起,这是我们方法的化学基因组学性质的暗示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computational Biology and Drug Design
International Journal of Computational Biology and Drug Design Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
1.00
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信