Jonathan C Sanford, Yingying Guo, Wolfgang Sadee, Danxin Wang
{"title":"Regulatory polymorphisms in CYP2C19 affecting hepatic expression.","authors":"Jonathan C Sanford, Yingying Guo, Wolfgang Sadee, Danxin Wang","doi":"10.1515/dmdi-2012-0038","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cytochrome P450 2C19 is responsible for the metabolism of many drugs, including the activation of clopidogrel. The allele CYP2C19*17 is associated with ultra-rapid metabolizer phenotypes by increasing gene transcription. This study tests to what extent CYP2C19*17 enhances CYP2C19 expression in human liver and whether additional regulatory variants contribute to variation in CYP2C19 expression.</p><p><strong>Methods: </strong>CYP2C19 mRNA was measured with quantitative real-time PCR (qRT-PCR), enzyme activity as metabolic velocity with S-mephenytoin as the substrate and allelic mRNA expression ratio with SNaPshot in human livers. CYP2C19 transcribed exons and a 4kb promoter region were sequenced using IonTorrent PGM or Sanger sequencing and screened for polymorphisms associated with total hepatic CYP2C19 mRNA, enzyme activity and allelic mRNA ratios.</p><p><strong>Results: </strong>Livers heterozygote and homozygous for CYP2C19*17 had mRNA levels 1.8-fold (p=0.028) and 2.9-fold (p=0.006), respectively, above homozygous reference allele livers. CYP2C19*17 heterozygotes were also associated with increased allelic mRNA expression (allelic ratio ~1.8-fold, SD±0.6, p<0.005), whereas CYP2C19 enzyme activity was elevated 2.3-fold, with borderline significance (p=0.06) in CYP2C19*17 carriers. One liver sample of African ancestry displayed a 2-fold allelic expression ratio, and another sample, a ~12-fold increase in metabolic velocity. Neither case was accounted for by *17, which indicates the presence of additional regulatory variants.</p><p><strong>Conclusions: </strong>Our findings confirm *17 as a regulatory polymorphism enhancing hepatic CYP2C19 expression 2-fold with potential to compensate for the loss of function allele CYP2C19*2. Additional regulatory factors may also enhance CYP2C19 expression in African American populations.</p>","PeriodicalId":11319,"journal":{"name":"Drug Metabolism and Drug Interactions","volume":"28 1","pages":"23-30"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/dmdi-2012-0038","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Drug Interactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dmdi-2012-0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Background: Cytochrome P450 2C19 is responsible for the metabolism of many drugs, including the activation of clopidogrel. The allele CYP2C19*17 is associated with ultra-rapid metabolizer phenotypes by increasing gene transcription. This study tests to what extent CYP2C19*17 enhances CYP2C19 expression in human liver and whether additional regulatory variants contribute to variation in CYP2C19 expression.
Methods: CYP2C19 mRNA was measured with quantitative real-time PCR (qRT-PCR), enzyme activity as metabolic velocity with S-mephenytoin as the substrate and allelic mRNA expression ratio with SNaPshot in human livers. CYP2C19 transcribed exons and a 4kb promoter region were sequenced using IonTorrent PGM or Sanger sequencing and screened for polymorphisms associated with total hepatic CYP2C19 mRNA, enzyme activity and allelic mRNA ratios.
Results: Livers heterozygote and homozygous for CYP2C19*17 had mRNA levels 1.8-fold (p=0.028) and 2.9-fold (p=0.006), respectively, above homozygous reference allele livers. CYP2C19*17 heterozygotes were also associated with increased allelic mRNA expression (allelic ratio ~1.8-fold, SD±0.6, p<0.005), whereas CYP2C19 enzyme activity was elevated 2.3-fold, with borderline significance (p=0.06) in CYP2C19*17 carriers. One liver sample of African ancestry displayed a 2-fold allelic expression ratio, and another sample, a ~12-fold increase in metabolic velocity. Neither case was accounted for by *17, which indicates the presence of additional regulatory variants.
Conclusions: Our findings confirm *17 as a regulatory polymorphism enhancing hepatic CYP2C19 expression 2-fold with potential to compensate for the loss of function allele CYP2C19*2. Additional regulatory factors may also enhance CYP2C19 expression in African American populations.