Parallel Mapping Approaches for GNUMAP.

Nathan L Clement, Mark J Clement, Quinn Snell, W Evan Johnson
{"title":"Parallel Mapping Approaches for GNUMAP.","authors":"Nathan L Clement,&nbsp;Mark J Clement,&nbsp;Quinn Snell,&nbsp;W Evan Johnson","doi":"10.1109/ipdps.2011.184","DOIUrl":null,"url":null,"abstract":"<p><p>Mapping short next-generation reads to reference genomes is an important element in SNP calling and expression studies. A major limitation to large-scale whole-genome mapping is the large memory requirements for the algorithm and the long run-time necessary for accurate studies. Several parallel implementations have been performed to distribute memory on different processors and to equally share the processing requirements. These approaches are compared with respect to their memory footprint, load balancing, and accuracy. When using MPI with multi-threading, linear speedup can be achieved for up to 256 processors.</p>","PeriodicalId":89233,"journal":{"name":"Proceedings. IPDPS (Conference)","volume":"2011 ","pages":"435-443"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ipdps.2011.184","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IPDPS (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ipdps.2011.184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Mapping short next-generation reads to reference genomes is an important element in SNP calling and expression studies. A major limitation to large-scale whole-genome mapping is the large memory requirements for the algorithm and the long run-time necessary for accurate studies. Several parallel implementations have been performed to distribute memory on different processors and to equally share the processing requirements. These approaches are compared with respect to their memory footprint, load balancing, and accuracy. When using MPI with multi-threading, linear speedup can be achieved for up to 256 processors.

GNUMAP的并行映射方法。
将下一代短reads定位到参考基因组是SNP呼叫和表达研究的重要组成部分。大规模全基因组绘图的一个主要限制是算法的大内存要求和准确研究所需的长运行时间。为了在不同的处理器上分配内存并平等地共享处理需求,已经执行了几个并行实现。这些方法在内存占用、负载平衡和准确性方面进行比较。当使用MPI多线程时,最多可以实现256个处理器的线性加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信