Camila Macedo, Hēth Turquist, Diana Metes, Angus W Thomson
{"title":"Immunoregulatory properties of rapamycin-conditioned monocyte-derived dendritic cells and their role in transplantation.","authors":"Camila Macedo, Hēth Turquist, Diana Metes, Angus W Thomson","doi":"10.1186/2047-1440-1-16","DOIUrl":null,"url":null,"abstract":"<p><p> In efforts to minimize the chronic administration of immunosuppression (IS) drugs in transplantation and autoimmune disease, various cell-based tolerogenic therapies, including the use of regulatory or tolerogenic dendritic cells (tolDC) have been developed. These DC-based therapies aim to harness the inherent immunoregulatory potential of these professional antigen-presenting cells. In this short review, we describe both the demonstrated tolerogenic properties, and current limitations of rapamycin-conditioned DC (RAPA-DC). RAPA-DC are generated through inhibition of the integrative kinase mammalian target of rapamycin (mTOR) by the immunosuppressive macrolide rapamycin during propagation of monocyte-derived DC. Consistent with the characteristics of tolDC, murine RAPA-DC display resistance to phenotypic maturation induced by pro-inflammatory stimuli; exhibit the ability to migrate to secondary lymphoid tissue (important for 'cross-presentation' of antigen to T cells), and enrich for naturally-occurring CD4+ regulatory T cells. In rodent models, delivery of recipient-derived RAPA-DC pulsed with donor antigen prior to organ transplantation can prolong allogeneic heart-graft survival indefinitely, especially when combined with a short course of IS. These encouraging data support ongoing efforts to develop RAPA-DC for clinical testing. When compared to murine RAPA-DC however, human RAPA-DC have proven only partially resistant to maturation triggered by pro-inflammatory cytokines, and display heterogeneity in their impact on effector T-cell expansion and function. In total, the evidence suggests the need for more in-depth studies to better understand the mechanisms by which mTOR controls human DC function. These studies may facilitate the development of RAPA-DC therapy alone or together with agents that preserve/enhance their tolerogenic properties as clinical immunoregulatory vectors.</p>","PeriodicalId":89864,"journal":{"name":"Transplantation research","volume":"1 1","pages":"16"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560974/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transplantation research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2047-1440-1-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In efforts to minimize the chronic administration of immunosuppression (IS) drugs in transplantation and autoimmune disease, various cell-based tolerogenic therapies, including the use of regulatory or tolerogenic dendritic cells (tolDC) have been developed. These DC-based therapies aim to harness the inherent immunoregulatory potential of these professional antigen-presenting cells. In this short review, we describe both the demonstrated tolerogenic properties, and current limitations of rapamycin-conditioned DC (RAPA-DC). RAPA-DC are generated through inhibition of the integrative kinase mammalian target of rapamycin (mTOR) by the immunosuppressive macrolide rapamycin during propagation of monocyte-derived DC. Consistent with the characteristics of tolDC, murine RAPA-DC display resistance to phenotypic maturation induced by pro-inflammatory stimuli; exhibit the ability to migrate to secondary lymphoid tissue (important for 'cross-presentation' of antigen to T cells), and enrich for naturally-occurring CD4+ regulatory T cells. In rodent models, delivery of recipient-derived RAPA-DC pulsed with donor antigen prior to organ transplantation can prolong allogeneic heart-graft survival indefinitely, especially when combined with a short course of IS. These encouraging data support ongoing efforts to develop RAPA-DC for clinical testing. When compared to murine RAPA-DC however, human RAPA-DC have proven only partially resistant to maturation triggered by pro-inflammatory cytokines, and display heterogeneity in their impact on effector T-cell expansion and function. In total, the evidence suggests the need for more in-depth studies to better understand the mechanisms by which mTOR controls human DC function. These studies may facilitate the development of RAPA-DC therapy alone or together with agents that preserve/enhance their tolerogenic properties as clinical immunoregulatory vectors.