Two-step nanoprecipitation for the production of protein-loaded PLGA nanospheres

Moraima Morales-Cruz, Giselle M. Flores-Fernández, Myreisa Morales-Cruz, Elsie A. Orellano, José A. Rodriguez-Martinez, Mercedes Ruiz, Kai Griebenow
{"title":"Two-step nanoprecipitation for the production of protein-loaded PLGA nanospheres","authors":"Moraima Morales-Cruz,&nbsp;Giselle M. Flores-Fernández,&nbsp;Myreisa Morales-Cruz,&nbsp;Elsie A. Orellano,&nbsp;José A. Rodriguez-Martinez,&nbsp;Mercedes Ruiz,&nbsp;Kai Griebenow","doi":"10.1016/j.rinphs.2012.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>One of the first methods to encapsulate drugs within polymer nanospheres was developed by Fessi and coworkers in 1989 and consisted of one-step nanoprecipitation based on solvent displacement. However, proteins are poorly encapsulated within polymer nanoparticles using this method because of their limited solubility in organic solvents. To overcome this limitation, we developed a two-step nanoprecipitation method and encapsulated various proteins with high efficiency into poly(lactic-<em>co</em>-glycolic)acid (PLGA) nanospheres (NP). In this method, a protein nanoprecipitation step is used first followed by a second polymer nanoprecipitation step. Two model enzymes, lysozyme and α-chymotrypsin, were used for the optimization of the method. We obtained encapsulation efficiencies of &gt;70%, an amount of buffer-insoluble protein aggregates of typically &lt;2%, and a high residual activity of typically &gt;90%. The optimum conditions identified for lysozyme were used to successfully encapsulate cytochrome <em>c</em>(Cyt-c), an apoptosis-initiating basic protein of similar size, to verify reproducibility of the encapsulation procedure. The size of the Cyt-c loaded-PLGA nanospheres was around 300–400<!--> <!-->nm indicating the potential of the delivery system to passively target tumors. Cell viability studies, using a human cervical cancer cell line (HeLa), demonstrate excellent biocompatibility of the PLGA nanoparticles. PLGA nanoparticles carrying encapsulated Cyt-c were not efficient in causing apoptosis presumably because PLGA nanoparticles are not efficiently taken up by the cells. Future systems will have to be optimized to ascertain efficient cellular uptake of the nanoparticles by, e.g., surface modification with receptor ligands.</p></div>","PeriodicalId":89718,"journal":{"name":"Results in pharma sciences","volume":"2 ","pages":"Pages 79-85"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rinphs.2012.11.001","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in pharma sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211286312000115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

Abstract

One of the first methods to encapsulate drugs within polymer nanospheres was developed by Fessi and coworkers in 1989 and consisted of one-step nanoprecipitation based on solvent displacement. However, proteins are poorly encapsulated within polymer nanoparticles using this method because of their limited solubility in organic solvents. To overcome this limitation, we developed a two-step nanoprecipitation method and encapsulated various proteins with high efficiency into poly(lactic-co-glycolic)acid (PLGA) nanospheres (NP). In this method, a protein nanoprecipitation step is used first followed by a second polymer nanoprecipitation step. Two model enzymes, lysozyme and α-chymotrypsin, were used for the optimization of the method. We obtained encapsulation efficiencies of >70%, an amount of buffer-insoluble protein aggregates of typically <2%, and a high residual activity of typically >90%. The optimum conditions identified for lysozyme were used to successfully encapsulate cytochrome c(Cyt-c), an apoptosis-initiating basic protein of similar size, to verify reproducibility of the encapsulation procedure. The size of the Cyt-c loaded-PLGA nanospheres was around 300–400 nm indicating the potential of the delivery system to passively target tumors. Cell viability studies, using a human cervical cancer cell line (HeLa), demonstrate excellent biocompatibility of the PLGA nanoparticles. PLGA nanoparticles carrying encapsulated Cyt-c were not efficient in causing apoptosis presumably because PLGA nanoparticles are not efficiently taken up by the cells. Future systems will have to be optimized to ascertain efficient cellular uptake of the nanoparticles by, e.g., surface modification with receptor ligands.

Abstract Image

Abstract Image

Abstract Image

两步纳米沉淀法制备载蛋白PLGA纳米球
Fessi和他的同事在1989年开发了第一个将药物包裹在聚合物纳米球内的方法,该方法是基于溶剂置换的一步纳米沉淀法。然而,由于蛋白质在有机溶剂中的溶解度有限,这种方法很难将蛋白质包裹在聚合物纳米颗粒中。为了克服这一限制,我们开发了一种两步纳米沉淀法,并将各种蛋白质高效地封装在聚乳酸-羟基乙酸(PLGA)纳米球(NP)中。在这种方法中,首先使用蛋白质纳米沉淀步骤,然后是第二个聚合物纳米沉淀步骤。采用溶菌酶和α-凝乳胰蛋白酶两种模式酶对该方法进行优化。我们获得了70%的包封效率,2%的缓冲不溶性蛋白聚集体,以及90%的高残留活性。利用确定的溶菌酶的最佳条件,成功地包封细胞色素c(Cyt-c),一种类似大小的凋亡起始碱性蛋白,以验证包封过程的可重复性。负载Cyt-c的plga纳米球的大小约为300-400 nm,这表明该递送系统具有被动靶向肿瘤的潜力。使用人宫颈癌细胞系(HeLa)进行的细胞活力研究表明,PLGA纳米颗粒具有良好的生物相容性。携带包被Cyt-c的PLGA纳米颗粒导致细胞凋亡的效率不高,这可能是因为PLGA纳米颗粒没有被细胞有效地吸收。未来的系统将必须优化,以确定有效的细胞吸收纳米粒子,例如,表面修饰与受体配体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信