Vishwesh V Kulkarni, Venkatesh Kareenhalli, Ganesh A Viswananthan, Marc Riedel
{"title":"Characterizing the memory of the GAL regulatory network in Saccharomyces cerevisiae.","authors":"Vishwesh V Kulkarni, Venkatesh Kareenhalli, Ganesh A Viswananthan, Marc Riedel","doi":"10.1007/s11693-011-9086-3","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic regulatory networks respond dynamically to perturbations in the intracellular and extracellular environments of an organism. The GAL system in the yeast Saccharomyces cerevisiae has evolved to utilize galactose as an alternative carbon and energy source, in the absence of glucose in the environment. We present a dynamic model for GAL system in Saccharomyces cerevisiae, which includes a novel mechanism for Gal3p activation upon induction with galactose. The modification enables the model to simulate the experimental observation that in absence of galactose, oversynthesis of Gal3p can also induce the GAL system. We then characterize the memory of the GAL system as the domain of attraction of the steady states.</p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11693-011-9086-3","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11693-011-9086-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/9/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Genetic regulatory networks respond dynamically to perturbations in the intracellular and extracellular environments of an organism. The GAL system in the yeast Saccharomyces cerevisiae has evolved to utilize galactose as an alternative carbon and energy source, in the absence of glucose in the environment. We present a dynamic model for GAL system in Saccharomyces cerevisiae, which includes a novel mechanism for Gal3p activation upon induction with galactose. The modification enables the model to simulate the experimental observation that in absence of galactose, oversynthesis of Gal3p can also induce the GAL system. We then characterize the memory of the GAL system as the domain of attraction of the steady states.