Coordinated evolution of the hepatitis B virus polymerase.

Q2 Medicine
D S Campo, Z Dimitrova, J Lara, M Purdy, H Thai, S Ramachandran, L Ganova-Raeva, X Zhai, J C Forbi, C G Teo, Y Khudyakov
{"title":"Coordinated evolution of the hepatitis B virus polymerase.","authors":"D S Campo, Z Dimitrova, J Lara, M Purdy, H Thai, S Ramachandran, L Ganova-Raeva, X Zhai, J C Forbi, C G Teo, Y Khudyakov","doi":"10.3233/ISB-2012-0452","DOIUrl":null,"url":null,"abstract":"The detection of compensatory mutations that abrogate negative fitness effects of drug-resistance and vaccine-escape mutations indicates the important role of epistatic connectivity in evolution of viruses, especially under the strong selection pressures. Mapping of epistatic connectivity in the form of coordinated substitutions should help to characterize molecular mechanisms shaping viral evolution and provides a tool for the development of novel anti-viral drugs and vaccines. We analyzed coordinated variation among amino acid sites in 370 the hepatitis B virus (HBV) polymerase sequences using Bayesian networks. Among the HBV polymerase domains the spacer domain separating terminal protein from the reverse-transcriptase domain, showed the highest network centrality. Coordinated substitutions preserve the hydrophobicity and charge of Spacer. Maximum likelihood estimates of codon selection showed that Spacer contains the highest number of positively selected sites. Identification of 67% of the domain lacking an ordered structure suggests that Spacer belongs to the class of intrinsically disordered domains and proteins whose crucial functional role in the regulation of transcription, translation and cellular signal transduction has only recently been recognized. Spacer plays a central role in the epistatic network associating substitutions across the HBV genome, including those conferring viral virulence, drug resistance and vaccine escape. The data suggest that Spacer is extensively involved in coordination of HBV evolution.","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/ISB-2012-0452","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ISB-2012-0452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 8

Abstract

The detection of compensatory mutations that abrogate negative fitness effects of drug-resistance and vaccine-escape mutations indicates the important role of epistatic connectivity in evolution of viruses, especially under the strong selection pressures. Mapping of epistatic connectivity in the form of coordinated substitutions should help to characterize molecular mechanisms shaping viral evolution and provides a tool for the development of novel anti-viral drugs and vaccines. We analyzed coordinated variation among amino acid sites in 370 the hepatitis B virus (HBV) polymerase sequences using Bayesian networks. Among the HBV polymerase domains the spacer domain separating terminal protein from the reverse-transcriptase domain, showed the highest network centrality. Coordinated substitutions preserve the hydrophobicity and charge of Spacer. Maximum likelihood estimates of codon selection showed that Spacer contains the highest number of positively selected sites. Identification of 67% of the domain lacking an ordered structure suggests that Spacer belongs to the class of intrinsically disordered domains and proteins whose crucial functional role in the regulation of transcription, translation and cellular signal transduction has only recently been recognized. Spacer plays a central role in the epistatic network associating substitutions across the HBV genome, including those conferring viral virulence, drug resistance and vaccine escape. The data suggest that Spacer is extensively involved in coordination of HBV evolution.
乙型肝炎病毒聚合酶的协同进化。
代偿性突变的发现消除了抗药性和疫苗逃逸突变的负适合度效应,表明上位性连接在病毒进化中的重要作用,特别是在强选择压力下。以协调取代的形式绘制上位连通性图谱,应有助于表征形成病毒进化的分子机制,并为开发新型抗病毒药物和疫苗提供工具。我们使用贝叶斯网络分析了370个乙型肝炎病毒(HBV)聚合酶序列氨基酸位点之间的协调变异。在HBV聚合酶结构域中,分离末端蛋白和逆转录酶结构域的间隔结构域显示出最高的网络中心性。配位取代保留了间隔剂的疏水性和电荷。密码子选择的最大似然估计表明,Spacer包含最多的正选择位点。发现67%的结构域缺乏有序结构,表明Spacer属于内在无序结构域和蛋白质,其在转录、翻译和细胞信号转导调节中的关键功能作用直到最近才被认识到。间隔蛋白在与HBV基因组相关的上位网络中起着核心作用,包括那些赋予病毒毒力、耐药性和疫苗逃逸的网络。这些数据表明,Spacer广泛参与HBV进化的协调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
In Silico Biology
In Silico Biology Computer Science-Computational Theory and Mathematics
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍: The considerable "algorithmic complexity" of biological systems requires a huge amount of detailed information for their complete description. Although far from being complete, the overwhelming quantity of small pieces of information gathered for all kind of biological systems at the molecular and cellular level requires computational tools to be adequately stored and interpreted. Interpretation of data means to abstract them as much as allowed to provide a systematic, an integrative view of biology. Most of the presently available scientific journals focus either on accumulating more data from elaborate experimental approaches, or on presenting new algorithms for the interpretation of these data. Both approaches are meritorious.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信