{"title":"PAK family kinases: Physiological roles and regulation.","authors":"Zhuo-Shen Zhao, Ed Manser","doi":"10.4161/cl.21912","DOIUrl":null,"url":null,"abstract":"<p><p>The p21-activated kinases (PAKs) are a family of Ser/Thr protein kinases that are represented by six genes in humans (PAK 1-6), and are found in all eukaryotes sequenced to date. Genetic and knockdown experiments in frogs, fish and mice indicate group I PAKs are widely expressed, required for multiple tissue development, and particularly important for immune and nervous system function in the adult. The group II PAKs (human PAKs 4-6) are more enigmatic, but their restriction to metazoans and presence at cell-cell junctions suggests these kinases emerged to regulate junctional signaling. Studies of protozoa and fungal PAKs show that they regulate cell shape and polarity through phosphorylation of multiple cytoskeletal proteins, including microtubule binding proteins, myosins and septins. This chapter discusses what we know about the regulation of PAKs and their physiological role in different model organisms, based primarily on gene knockout studies.</p>","PeriodicalId":72547,"journal":{"name":"Cellular logistics","volume":"2 2","pages":"59-68"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/cl.21912","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/cl.21912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64
Abstract
The p21-activated kinases (PAKs) are a family of Ser/Thr protein kinases that are represented by six genes in humans (PAK 1-6), and are found in all eukaryotes sequenced to date. Genetic and knockdown experiments in frogs, fish and mice indicate group I PAKs are widely expressed, required for multiple tissue development, and particularly important for immune and nervous system function in the adult. The group II PAKs (human PAKs 4-6) are more enigmatic, but their restriction to metazoans and presence at cell-cell junctions suggests these kinases emerged to regulate junctional signaling. Studies of protozoa and fungal PAKs show that they regulate cell shape and polarity through phosphorylation of multiple cytoskeletal proteins, including microtubule binding proteins, myosins and septins. This chapter discusses what we know about the regulation of PAKs and their physiological role in different model organisms, based primarily on gene knockout studies.