In silico pharmacology for a multidisciplinary drug discovery process.

Santiago Schiaffino Ortega, Luisa Carlota López Cara, María Kimatrai Salvador
{"title":"In silico pharmacology for a multidisciplinary drug discovery process.","authors":"Santiago Schiaffino Ortega,&nbsp;Luisa Carlota López Cara,&nbsp;María Kimatrai Salvador","doi":"10.1515/dmdi-2012-0021","DOIUrl":null,"url":null,"abstract":"<p><p>The process of bringing new and innovative drugs, from conception and synthesis through to approval on the market can take the pharmaceutical industry 8-15 years and cost approximately $1.8 billion. Two key technologies are improving the hit-to-drug timeline: high-throughput screening (HTS) and rational drug design. In the latter case, starting from some known ligand-based or target-based information, a lead structure will be rationally designed to be tested in vitro or in vivo. Computational methods are part of many drug discovery programs, including the assessment of ADME (absorption-distribution-metabolism-excretion) and toxicity (ADMET) properties of compounds at the early stages of discovery/development with impressive results. The aim of this paper is to review, in a simple way, some of the most popular strategies used by modelers and some successful applications on computational chemistry to raise awareness of its importance and potential for an actual multidisciplinary drug discovery process.</p>","PeriodicalId":11319,"journal":{"name":"Drug Metabolism and Drug Interactions","volume":"27 4","pages":"199-207"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/dmdi-2012-0021","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Drug Interactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dmdi-2012-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

The process of bringing new and innovative drugs, from conception and synthesis through to approval on the market can take the pharmaceutical industry 8-15 years and cost approximately $1.8 billion. Two key technologies are improving the hit-to-drug timeline: high-throughput screening (HTS) and rational drug design. In the latter case, starting from some known ligand-based or target-based information, a lead structure will be rationally designed to be tested in vitro or in vivo. Computational methods are part of many drug discovery programs, including the assessment of ADME (absorption-distribution-metabolism-excretion) and toxicity (ADMET) properties of compounds at the early stages of discovery/development with impressive results. The aim of this paper is to review, in a simple way, some of the most popular strategies used by modelers and some successful applications on computational chemistry to raise awareness of its importance and potential for an actual multidisciplinary drug discovery process.

用于多学科药物发现过程的计算机药理学。
从概念和合成到市场批准,将新药和创新药物引入市场的过程可能需要制药行业8-15年的时间,耗资约18亿美元。高通量筛选(high-throughput screening, HTS)和合理的药物设计是改善药物上市时间的两项关键技术。在后一种情况下,从一些已知的基于配体或基于靶标的信息出发,合理设计导联结构,进行体外或体内测试。计算方法是许多药物发现项目的一部分,包括在发现/开发的早期阶段评估化合物的ADME(吸收-分布-代谢-排泄)和毒性(ADMET)特性,并取得了令人印象深刻的结果。本文的目的是以一种简单的方式回顾建模者使用的一些最流行的策略和计算化学上的一些成功应用,以提高对其重要性的认识和对实际多学科药物发现过程的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信