{"title":"Will stringent total nitrogen wastewater treatment plant discharge regulations achieve stream water quality goals?","authors":"Ji-Hee Son, Kenneth H Carlson","doi":"10.1039/c2em30381g","DOIUrl":null,"url":null,"abstract":"<p><p>The Colorado Department of Public Health and Environment (CDPHE) proposed the in-stream numeric nutrient criteria as 2 mg TN per L and 0.16 mg TP per L for warm surface waters and 0.40 mg TN per L and 0.11 mg TP per L for cold surface waters. Consequently the department presented the nutrient limits for the municipal wastewater treatment plants (WWTPs) as annual averages of 0.7 mg TP per L and 5.7 mg TIN per L and quarterly averages of 1.0 mg TP per L and 9.0 mg TIN per L. Implementing stringent nutrient reduction at point sources is unlikely to result in improvements to the environment without non-point source controls. In this study, total nitrogen (TN) load inputs from known point source, WWTPs, and other non-point sources at six sub-basins of the Cache La Poudre (CLP) River Basin were estimated and compared under various hydrologic conditions. Significant loading exceedance from the proposed limits was observed during lower flow conditions and other sources dominated during events when the exceedance was observed except for one point. The point receives direct TN inputs from a WWTP which has the highest TN concentration in its effluent among all WWTPs in the study area; however, TN loads entered the point from other sources were significant during higher flow conditions. TN loads in the CLP River were simulated to determine whether the loads meet the proposed in-stream limits in a case in which all WWTPs comply with the proposed regulations for WWTPs. From this study, it was observed that reducing TN concentrations only at WWTPs merely impacts total TN loads in the river.</p>","PeriodicalId":50202,"journal":{"name":"Journal of Environmental Monitoring","volume":"14 11","pages":"2921-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/c2em30381g","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/c2em30381g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The Colorado Department of Public Health and Environment (CDPHE) proposed the in-stream numeric nutrient criteria as 2 mg TN per L and 0.16 mg TP per L for warm surface waters and 0.40 mg TN per L and 0.11 mg TP per L for cold surface waters. Consequently the department presented the nutrient limits for the municipal wastewater treatment plants (WWTPs) as annual averages of 0.7 mg TP per L and 5.7 mg TIN per L and quarterly averages of 1.0 mg TP per L and 9.0 mg TIN per L. Implementing stringent nutrient reduction at point sources is unlikely to result in improvements to the environment without non-point source controls. In this study, total nitrogen (TN) load inputs from known point source, WWTPs, and other non-point sources at six sub-basins of the Cache La Poudre (CLP) River Basin were estimated and compared under various hydrologic conditions. Significant loading exceedance from the proposed limits was observed during lower flow conditions and other sources dominated during events when the exceedance was observed except for one point. The point receives direct TN inputs from a WWTP which has the highest TN concentration in its effluent among all WWTPs in the study area; however, TN loads entered the point from other sources were significant during higher flow conditions. TN loads in the CLP River were simulated to determine whether the loads meet the proposed in-stream limits in a case in which all WWTPs comply with the proposed regulations for WWTPs. From this study, it was observed that reducing TN concentrations only at WWTPs merely impacts total TN loads in the river.