Early fusion of low level features for emotion mining.

Biomedical informatics insights Pub Date : 2012-01-01 Epub Date: 2012-01-30 DOI:10.4137/BII.S8973
Fabon Dzogang, Marie-Jeanne Lesot, Maria Rifqi, Bernadette Bouchon-Meunier
{"title":"Early fusion of low level features for emotion mining.","authors":"Fabon Dzogang,&nbsp;Marie-Jeanne Lesot,&nbsp;Maria Rifqi,&nbsp;Bernadette Bouchon-Meunier","doi":"10.4137/BII.S8973","DOIUrl":null,"url":null,"abstract":"<p><p>WE STUDY THE DISCRIMINATION OF EMOTIONS ANNOTATED IN FREE TEXTS AT THE SENTENCE LEVEL: a sentence can either be associated with no emotion (neutral) or multiple labels of emotion. The proposed system relies on three characteristics. We implement an early fusion of grams of increasing orders transposing an approach successfully employed in the related task of opinion mining. We apply a filtering process that consists in extracting frequent n-grams and making use of the Shannon's entropy measure to respectively maintain dictionaries at balanced sizes and keep emotion specific features. Finally the overall system is implemented as a 2-step decision process: a first classifier discriminates between neutral and emotion bearing sentences, then one classifier per emotion is applied on emotion bearing sentences. The final decision is given by the classifier holding the maximum confidence. Results obtained on the testing set are promising.</p>","PeriodicalId":88397,"journal":{"name":"Biomedical informatics insights","volume":"5 Suppl. 1","pages":"129-36"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BII.S8973","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical informatics insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/BII.S8973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

WE STUDY THE DISCRIMINATION OF EMOTIONS ANNOTATED IN FREE TEXTS AT THE SENTENCE LEVEL: a sentence can either be associated with no emotion (neutral) or multiple labels of emotion. The proposed system relies on three characteristics. We implement an early fusion of grams of increasing orders transposing an approach successfully employed in the related task of opinion mining. We apply a filtering process that consists in extracting frequent n-grams and making use of the Shannon's entropy measure to respectively maintain dictionaries at balanced sizes and keep emotion specific features. Finally the overall system is implemented as a 2-step decision process: a first classifier discriminates between neutral and emotion bearing sentences, then one classifier per emotion is applied on emotion bearing sentences. The final decision is given by the classifier holding the maximum confidence. Results obtained on the testing set are promising.

Abstract Image

早期融合低级特征进行情感挖掘。
我们在句子层面上研究了自由文本中标注的情感的区分:一个句子可以与没有情感(中性)或多个情感标签相关联。提出的系统依赖于三个特征。我们将一种在意见挖掘相关任务中成功应用的方法转置,实现了一种增加阶数的克的早期融合。我们应用了一个过滤过程,包括提取频繁的n-gram和使用香农熵度量来分别保持字典在平衡大小和保持情感特定特征。最后,整个系统被实现为一个两步决策过程:第一个分类器区分中性和带有情感的句子,然后每个情感一个分类器应用于带有情感的句子。最终的决定由拥有最大置信度的分类器给出。在测试集上得到的结果是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信