LASSA: Emotion Detection via Information Fusion.

Biomedical informatics insights Pub Date : 2012-01-01 Epub Date: 2012-01-30 DOI:10.4137/BII.S8949
Ning Yu, Sandra Kübler, Joshua Herring, Yu-Yin Hsu, Ross Israel, Charese Smiley
{"title":"LASSA: Emotion Detection via Information Fusion.","authors":"Ning Yu,&nbsp;Sandra Kübler,&nbsp;Joshua Herring,&nbsp;Yu-Yin Hsu,&nbsp;Ross Israel,&nbsp;Charese Smiley","doi":"10.4137/BII.S8949","DOIUrl":null,"url":null,"abstract":"<p><p>DUE TO THE COMPLEXITY OF EMOTIONS IN SUICIDE NOTES AND THE SUBTLE NATURE OF SENTIMENTS, THIS STUDY PROPOSES A FUSION APPROACH TO TACKLE THE CHALLENGE OF SENTIMENT CLASSIFICATION IN SUICIDE NOTES: leveraging WordNet-based lexicons, manually created rules, character-based n-grams, and other linguistic features. Although our results are not satisfying, some valuable lessons are learned and promising future directions are identified.</p>","PeriodicalId":88397,"journal":{"name":"Biomedical informatics insights","volume":"5 Suppl. 1","pages":"71-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BII.S8949","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical informatics insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/BII.S8949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

DUE TO THE COMPLEXITY OF EMOTIONS IN SUICIDE NOTES AND THE SUBTLE NATURE OF SENTIMENTS, THIS STUDY PROPOSES A FUSION APPROACH TO TACKLE THE CHALLENGE OF SENTIMENT CLASSIFICATION IN SUICIDE NOTES: leveraging WordNet-based lexicons, manually created rules, character-based n-grams, and other linguistic features. Although our results are not satisfying, some valuable lessons are learned and promising future directions are identified.

LASSA:基于信息融合的情感检测。
鉴于遗书中情绪的复杂性和情绪的微妙性,本研究提出了一种融合方法来解决遗书中情绪分类的挑战:利用基于wordnet的词汇、人工创建的规则、基于字符的n-grams和其他语言特征。虽然我们的结果并不令人满意,但从中吸取了一些宝贵的经验教训,并确定了有希望的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信